Studying and solving polynomial systems
with the RegularChains library

The RegularChains Developer Team
October, 2021

1. Introduction

The ReqgularChains library offers a variety of commands for solving polynomial
systems symbolically and studying their solutions. The input systems may contain
polynomial equations p =0, polynomial inequations p # 0, and polynomial
inequalities p > 0 or p > 0. All of those may be nonlinear. For a given system, the
coefficients of the input polynomials may be rational numbers, integers modulo a
prime, or polynomials depending on parameters. The solution sets computed by
the RegularChains library are described by lists of components. Geometrically,
such a component can be a point (or a set of points), a curve (or a set of curves),
a surface (or a set of surfaces), etc. Computationally, components are
represented by a special kind of polynomial system with a triangular shape and
other algebraic properties. Depending if the input system consists of equations
only, has inequations but no inequalities, or possesses inequalities, the system
representing a component is called aregular chain, aregular system or aregular
semi-algebraic system, respectively. The word "regular” refers to the interesting
algebraic properties that these systems have. The RegularChains library
provides types for these different kinds of polynomial systems; this important
feature will be illustrated hereafter.

Another design feature of the RegularChains library is the organization of its 135
commands into 7 modules. The top-level of the library gathers the most
commonly used commands, whereas the six submodules are dedicated to special
topics. The submodules ChainTools, ConstructibleSetTools, and
SemiAlgebraicSetTools deal respectively with specific operations on regular
chains, regular systems, and regular semi-algebraic systems. The submodule
MatrixTools allows the user to handle linear systems over domains with zero-
divisors. This is a fundamental tool in the theory of regular chains with many
potential applications.

The submodule ParametricSystemTools is devoted to solving systems with
parameters, including real root classification and complex root classification of
such systems, as demonstrated below. Finally, the submodule
FastArithmeticTools provides highly optimized implementation of some
fundamental operations on regular chains, similar to some commands of the top-
level module and ChainTools. However, the commands of this submodule can
only be used under some assumptions and their usage requires care and

| advanced knowledge.

> restart;

wi t h(Regul ar Chai ns) ;

wi t h(Chai nTool s) ;

wi th(Matri xTool s);

wi t h(Constructi bl eSet Tool s) ;
wi t h(Paranetri cSyst enifool s) ;
wi t h(Sem Al gebr ai cSet Tool s) ;
w th(FastArithmeticTool s);

wi t h(Al gebr ai cGeonetryTool s);

[AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, Display,
DisplayPolynomialRing, E quations, ExtendedRegularGcd,
FastArithmeticTools, Inequations, Info, Initial, Intersect, Inverse,
IsRegular, LazyRealTriangularize, MainDegree, MainVariable,
MatrixCombine, MatrixTools, NormalForm, ParametricSystemTools,
PolynomialRing, Rank, RealTriangularize, RegularGed, Regularizelnitial,
SamplePoints, SemiAlgebraicSetTools, Separant,
SparsePseudoRemainder, SuggestVariableOrder, TRDFM elim eqsfirst,
TRDconvex_union, Tail, Triangularize]

[Chain, ChangeOfCoordinates, ChangeOfOrder, Construct, Cut,
DahanSchostTransform, Dimension, Empty, EqualSaturatedlIdeals,
EquiprojectableDecomposition, Extend, ExtendedNormalizedGcd,
IsAlgebraic, IsEmptyChain, IsInRadical, IsInSaturate, IsIncluded,
IsPrimitive, IsStronglyNormalized, IsZeroDimensional,
IteratedResultant, LastSubresultant, Lift, ListConstruct,
NormalizeRegularChain, NumberOfSolutions, Polynomial, Regularize,
RemoveRedundantComponents, SeparateSolutions, Squarefree,
SquarefreeFactorization, SubresultantChain, SubresultantOfIndex,
Under, Upper]

[IsZeroMatrix, JacobianMatrix, LowerEchelonForm, MatrixInverse,
MatrixMultiply, MatrixOverChain]

[Complement, ConstructibleSet, CylindricalDecompose, Difference,
EmptyConstructibleSet, GeneralConstruct, Intersection, IsContained,
IsEmpty, MakePairwiseDisjoint, PolynomialMapImage,
PolynomialMapPreimage, Projection, QuasiComponent,
RationalMapImage, RationalMapPreimage, RefiningPartition,
RegularSystem, RegularSystemDifference, RepresentingChain,
RepresentingInequations, RepresentingRegularSystems, SeparateZeros,
Union]

[BelongsTo, BorderPolynomial, CoefficientsInParameters,
ComplexRootClassification, ComprehensiveTriangularize, DefiningSet,
DiscriminantSequence, DiscriminantSet,
PreComprehensiveTriangularize, RealComprehensiveTriangularize,
RealRootClassification, Specialize]

[BoxValues, Complement, CylindricalAlgebraicDecompose, Difference,
DisplayParametricBox, DisplayQuantifierFreeFormula,
EmptySemiAlgebraicSet, Intersection, IsContained, IsEmpty,
IsParametricBox, LinearSolve,
PartialCylindricalAlgebraicDecomposition, PositiveInequalities,
Projection, QuantifierElimination, RealRootCounting, RealRootIsolate,

RefineBox, RefineListBox, RemoveRedundantComponents,
RepresentingBox, RepresentingChain,
RepresentingQuantifierFreeFormula, RepresentingRootIndex,
SignAtBox, VariableOrdering]

[BivariateModularTriangularize, IteratedResultantDimO,
IteratedResultantDim1, NormalFormDim0, NormalizePolynomialDimO,
NormalizeRegularChainDim0, RandomRegularChainDimO,
RandomRegularChainDim1, ReduceCoefficientsDimO,
RegularGedBySpecializationCube, RegularizeDimO,
ResultantBySpecializationCube, SubresultantChainSpecializationCube]

[Cylindrify, IntersectionMultiplicity, IsTransverse, LimitPoints, (1.1)
RationalFunctionLimit, RegularChainBranches, TangentCone,
TangentPlane, TriangularizeWithMultiplicity]

2. Polynomial systems and regular chains

This section introduces the user to the top-level module of the RegularChains
library. The concept of a regular chain is based on a recursive and univariate
vision of a polynomial. Several commands manipulating polynomials in this
manner are illustrated below. The most commonly used command of the library is
called Triangularize and is illustrated by several examples. It takes a polynomial
system as input and returns a description of its solution set. If the input system
consists of equations only, then this description is a list of regular chains. The
case where the input system admits inequations can be handled by Triangularize
or by the command GeneralConstruct of the ConstructibleSetTools submodule. In
case of inequalities, and more generally for computing the real solutions of a
polynomial system, the commands RealTriangularize, LazyRealTriangularize and
SamplePoints of the top-level module can be used. Different commands are also
available in the modules ParametricSystemTools and SemiAlgebraicSetTools for
the same purpose of real solving but for particular types of systems: they will be
presented later in this document.

2.1 A univariate vision of polynomials

Define the polynomial ring Q[x, y, z] with the variable ordering x> y > z. The
field Q of rational numbers is the default coefficient ring.

> R := Polynomal R ng([x, vy, z]);

L R := polynomial ring (2.1.1)
| The internal representation of this polynomial ring can be accessed as follows.

> Display(R);

Variables : [xy 2]
Parameters) (2.1.2)
Characteristic : O

;Consider the following polynomial.
> p 1= (y+1)*x"3+(z+4) *x+3;
| p=(y+1)xX+ (z+4)x+3 (2.1.3)

| The main variable of p as a polynomial of R is given by:
> Mai nVari abl e(p, R);
L X (2.1.4)
| The initial (or leading coefficient) of p:
> Initial(p, R;
_ y+1 (2.1.5)
| The degree of p in the main variable:
> Mai nDegree(p, R);
L 3 (2.1.6)
| The rank of p, which is the main variable of p raised to the main degree of p:
> Rank(p, R);
i X (2.1.7)
| The tail of p.
> Tail (p, R;
_ xZ+4x+3 (2.1.8)
| The separant of p, which is the derivative of p with regards to its main variable:
> Separant(p, R);
L 3x2y+3x2+z+4 (2.1.9)
| Change the ordering to 2 > y > x:
> R := Polynom al Ring([z, vy, X]);

D splay(R);

p := expand((y+1)*x"3+(z+4)*x+3);

Mai nVari abl e(p, R);

Initial (p, R);
Rank(p, R);
Tail (p, R;

Separant (p, R);
R := polynomial ring

Variables 2,y x]
Parameters g
Characteristic : 0
p = x3y+x3+x2+4x+ 3
z
X
z
x3y FXC+4x+3
X (2.1.10)

[Consider the polynomial ring Z3[Z: y, x] with the ordering z > y > x.

>R := PolynomalRing([z, vy, x], 3);
Di splay(R);
Initial (p, R);
Tail (p, R);
R := polynomial ring

Variables : lz,y x]

Parameters : 1%}
Characteristic : 3
X
3 3
| X y+x +Xx (2.1.11)

2.2 Computing the subresultants of two polynomials

The command SubresultantChain in the ChainTools module is used to compute
the subresultant chain of two polynomials. Let us illustrate this by an example.

Define a ring of polynomials.

|:> R := Polynom al Ring([y, X]);
R := polynomial ring (2.2.1)

Define two polynomials of R.

[> f1 1= (yh2+6) *(x-1)-y* (xA2+1);

fl=(y+6) (x—=1)—y(x*+1) (2.2.2)
> f2 .= (x"2+46) *(y-1)-x*(y"2+1);
[2:=0"+6) (y—1)—x(y’+1) (2.2.3)

Compute their subresultant chain w.r.t the variable y

|:> src := SubresultantChain(fl, f2, y, R;
src = subresultant chain (2.2.4)

The result is of type subresultant chain and encodes all the polynomials in the
subresultant chain. To display the iy subresulant polynomial, one can call the

command SubresultantOfindex. For example, to know the subresultant of index
0, that is the resultant, one can do as follows

|:> res := Subresultant O I ndex(0, src, R);
res=2x"—22x"+102x" — 274x° + 488 x* — 552 x + 288 (2.2.5)

To display all the subresultant polynomials, one can call the command Display.

> Display(src, R);
(—x2+5x—6)y—x3+6x2—11x+6

5 . A 3) (2.2.6)
2x —22x 4+ 102x —274x +488x — 552 x+ 288

The encoding of the subresultants can be controlled by an optional argument.
This encoding can be by values, over the monomial basis or via the Bezout Matrix.

When this optional argument is not specified, the encoding is chosen according to
a heuristical algorithm.

> src ;= SubresultantChain(fl, f2, y, R representation =
Bezout Matri x); op(src);

src = subresultant chain
table| [SRC MDEG =1, SRC MVAR =y, type = subresultant chain, (2.2.7)

SRC POLYQ =x"y—x)y’ —x*—x+6y—6, SRC POLYP = -X’y + xy’

—y*+6x—y— 6, SRC MATRIX

X +5x—6 X+ 6xX—11x+6 _
= 3 5 4 3 5 , representation
-X"4+6x —11x+6 x —5x +13x —35x+42
= BezoutMatrix
[> src := Subresul t ant Chai n(fi, f2, y, R representation =

Monom al Basi s); op(src);
src = subresultant chain
table([SRC MDEG = 1, SRC_MVAR =y, type = subresultant chain, (2.2.8)
SRC POLYQ = x2y — xy2 — X —x+ 6y— 6, SRC POLYP = —xzy + xy2
— y2 + 6 x — y— 6, subresultant _chain vector = |2 X —22x°+102x"
—274x> + 488x° — 552x+ 288, -X° — X'y +6x° +5xy—11x— 6y + 6,
xzy—xyz—xz—x—t— 6y—06, —x2y+ xyz—yz—i- 6X—y— 6],
representation = MonomialBasis])

2.3 Solving systems of equations with regular chains

Define a ring of polynomials.
> R := Polynomal Rng([x, vy, z]);

L R := polynomial ring (2.3.1)
| Define a set of polynomials of R.
> sys = {x+ty+z"2-1, Xx+y~2+z-1, x"2+y+z-1};

(2.3.2)

sys-{z +x+y—1y+x+z—1x—|—y+z—1} (2.3.2)
Ideally, one would like to decompose the solutions of sys into a list of points. This
is what the command Triangularize does using symbolic expressions. In the
output decomposition, some points are grouped because they share some
| properties. These groups are called regular chains.

A regular chain is a system of equations and inequations, satisfying special
algebraic properties. First, the equation part consists of non-constant
polynomials with pairwise different main variables; thus, the equation part has a
triangular shape. Second, the inequation part consists of the initials of the
polynomials defining the equations; moreover, the product of those initials is
regular (that is, not a zero-divisor) modulo the saturated ideal of the equation
part. This technical condition can be skipped by the non-expert reader, since in
most practical examples the inequations are trivial and can be ignored. This is
the case in our example where all initials are equal to 1, leading to trivial

| inequations.

> | := Triangularize(sys, R);
_ [.= [regular chain, regular chain, regular chain, regular chain] (2.3.3)
> map(Equations, |, R);

map(| nequations, |, R);

map(Nunber O Sol utions, |, R);

[[x—2z,y—222+22z-1], [x y,z—1], [x y—1,2], [x— 1, y, 2]]
(9, 9, 9,]
[2 1,1,1] (2.3.4)

The result is to be interpreted as follows: The system sys is equivalent to a union
of four regular chains. The equations for the first such regular chain are
x—1=y=2z=0, the equations for the second regular chain are x=y—1=2=0,
etc. None of the four regular chains have any inequations. The first three regular
chains have exactly one solution, and the last one has two solutions.

Note that you can also specify inequations of the form p # 0. For example, you
| can specify that x —z must not vanish.

> | := Triangul ari ze(sys, [X-z], R);
map(Equations, |, R);
map(Nunmber Of Sol utions, |, R);

| := [regular chain, regular chain]

[[x—1y 2], [xy,z—1]]
[1, 1] (2.3.5)

2.4 Solving polynomial systems with infinitely many
solutions

In the previous examples, the polynomial systems have finitely many solutions.
To illustrate how the Triangularize command handles systems with infinitely
many solutions, consider the following parametric linear system with unknowns
L x, y and parameters a, b, ¢, d, g, h.
> R := Polynomal Rng([x, vy, a, b, ¢, d, g, h]);

sys := {a*x+b*y-g, c*x+d*y-h};

R := polynomial ring
sys :={ax+by—g,cx+dy—h} (2.4.1)
By default, the Triangularize command computes the generic solutions of the

input system. For this parametric linear system, this implies its determinant is
| assumed to be nonzero.

> | := Triangul ari ze(sys, R);
map(Equations, |, R);
map(| nequations, |, R);

[:= [regular chain]
[[cx+yd—h, (ad—bc)y—ah+cgl]]
[{c,da— bc}] (2.4.2)
Thus the resulting regular chain consists of the two equations
cx+dy—h=(ad—bc)y+cg—ah=0 and the two inequationsc# 0 # ad
— bc, the first of which reflects the choice of ¢ as a pivot.
The other available Maple commands for solving such a system do a similar job.
> sol ve(sys, {X, y});

_ _bh—=dg _ M} (2.4.3)
L da—bc’ da—bc

> Groebner[Sol ve] (sys, {x, Vy});
{[[dxa—bcx+bh—-dg,yad—ybc—ah+ cg], plex(y, x), g1} (2.4.4)

The Triangularize command can do more if the option "output=lazard" is used. In
this case, all the solutions of the input are computed, generic or not. This implies
that the case where the determinant vanishes is also considered and solved. For
| each regular chain below, its equations and inequations are printed.

> | := Triangularize(sys, R output = |azard):
seq(Display(I[i], R, i = 1..nops(l));
cx+dy—h=0
cx+dy—h=0 da—bc=0
da—bc)y—ha+cg=0 hb—dg=0
()y g , g ’ (2.4.5)
da—bc+#0 c#0
c+0 d=+0
h+20
dy—h=0 cx—h=0
ax+by—g=0
a=0 ha—cg=0
dy—h=0
hb—dg=0 b=0
c=0 , y ’
c=0 d=0
a+0
d+0 c+0
d+0
h+20 h+20

ax+by—g=0
c=0
d=0 ,
h=0
a+0
y=0 x=0
a=0 b=20
c=0 ,1d=0
g=20 g=20
h=0 h=0

cx+dy—h=0
(da—bc)y—ha+cg=0
da—bc+#0
c#0

ax+yb—g=0
dy—h=0
c=0 ,
a+0
d+0

_h modulo 3.

cx+dy=0
da—bc=0
g=0

c#+0
d+0

[| |
o O o © o o

>SS Q@ Q o o 9
I

hb—dg=0
C=
d+0

c+0

d+0

cx—h=0
ha—cg=0
b=20
d=0
c#+0

> Rj:= PolynomialRing([x, y, a, b, ¢, d], {g, h}, 3);
I:= Triangularize(sys, R, output = lazard);

One may also want to "push” some parameters into the field of coefficients, that
is, to solve over a field of rational functions. Consider a new polynomial ring over
| the field Q(g, h) of rational functions in g and h.

> R, :=PolynomialRing([x, y, a, b, ¢, d], {g, h}):
1:==Triangu1arize(sys,Rz,outpwt=1azard):

seq(Display(li, Ry)» i==1..nops(l));

cx+dy—h=0
da—bc=0
] hb—-dg=0

(2.4.6)

Finally, we solve over ZS(g, h), that is, over the field of rational functions in g and

op(Display(Z, R3));
R5 := polynomial_ring
| := [regular chain, regular chain, regular chain, regular chain,
regular chain]
cx+dy+2h=0
cx+dy+2h=0
da+2bc=0
(da+2bc)y+2ha+cg=0
, hb+2dg=0 , (2.4.7)
da+2bc+0
c+0
c+0
d+0
ax+yb+2g=0 dy+2h=0 cx+2h=0
dy+2h=0 a=0 ha+2cg=0
c=0 ,ihb+2dg=0 , b=0
a+0 c=0 d=0
i d+0 d+0 c+0

2.5 Regular chains and polynomial gcds

The main subroutine of the Triangularize command is the RegularGcd command,
which computes polynomial gcds modulo regular chains. This routine is
illustrated hereafter together with basic commands on regular chains from the
| ChainTools submodule.
> R := Polynom al Ring([y, X]);
_ R := polynomial ring (2.5.1)
| Here's the empty regular chain and its internal representation.
> Enpty(R);

op(Empty(R));

regular_chain
property, polynomials, type, ModulePrint, module() (2.5.2)
option record;
export property, polynomials, type, ModulePrint;

. end module

You can construct a new regular chain by adding a (suitable) polynomial p to an
existing regular chain T. This operation may return a list of regular chains.
Indeed, checking that the initial of p is regular with regards to (the saturated
ideal of) T may split T.

| On the example below, this does not happen; the regular chain T is empty.
> | := Construct(x"2+1, Enpty(R), R);
rc .= 1[1];
[:= [regular chain]
B rc := regular chain (2.5.3)

The internal representation of the new regular chain rc is as follows. For each
polynomial in the regular chain, the data structure stores its main variable, its
main degree, and its initial. These quantities are needed quite frequently and are
therefore cached to avoid recomputing them each time they are needed.

The internal representation also shows a property about the regular chain:
isPrime. This means that its saturated ideal is a prime ideal. The knowledge of
| such property helps to speed up computations.
> op(rc);

regular_chain (2.5.4)
Now compute the greatest common divisor of two polynomials p; and p, modulo

| rc. The example is designed such that y+ 1 is a gcd.
> p,i=expand(((x+1)-y+x):(y+1));
p, :==expand(((x —1)-y +x):(y+1));
p; = xy2+2xy+y2+x+y
pzzzxy2+2xy—y2+x—y (2.5.5)

In general, the output of a gcd computation modulo a regular chain is a list of
"cases".

In the above example, no case splits can happen since rc defines a field.
| However, note that the output, below, is not exactly the one expected.

> rg :=Regu1achd(p1, P>, Y, rc, R); factor(rgll>

rg = [[2xy+ 2 x, regular chain]]
2x(y+1) (2.5.6)

However the extraneous factor 2 xis a unit modulo rc. Thus, the expected and
| the computed gcds are in fact associate, and therefore the result is correct.
Consider an example where a split is necessary during a gcd computation. To
create such an example, you need to make sure that the input equations do not
factor, because otherwise the Construct command will already split the system.
The example below has three variables; the two variables x and y are used for
| building a regular chain with two polynomials mx and my.
> R := Polynomal Rng([z, vy, X]);

R := polynomial ring (2.5.7)
The first polynomial is irreducible over Q.
> nx = X"2-2,
mx = x> — 2 (2.5.8)

Thus constructing a regular chain from it produces a single output. Make a copy
Lof it for later use.
>rc .= Construct(nmx, Empty(R), R[1];
rcx :=rc;
rc := regular chain

rcx i=rc (2.5.9)
The Construct command has detected that (the saturated ideal of) rc is a prime
ideal.

> op(rc);
regular_chain (2.5.10)

The second polynomial is not irreducible in Q[x][y]. The Construct command
would easily discover this fact and would split it when constructing a regular
| chain involving rec.
> ny = expand((y-x)*(y+x-1));

my ——x2+y2+x y (2.5.11)
By reducing my modulo rc, the reduced polynomial becomes irreducible in
| Q[x][y].
> my = SparsePseudoRenui nder(ny, rc, R);

i my =y +x—y—2 (2.5.12)
| Extend rc by my.
> | := Construct(my, rc, R;rc :=1[1];

[== [regular chain]

rc = regular chain (2.5.13)

The Construct command uses inexpensive criteria to detect whether the
associated saturated ideal is prime or not. These criteria fail here. So the
| constructed regular chain rc has no particular properties.

> op(rc); Equations(rc, R);
regular_ chaln
[y — y+x—2,x*— 2] (2.5.14)
Compute the gcd of p; and p,, defined below, modulo rc.

B p,=(y—x)z+ (x+y—1)(z+1);
p,=y—Xx+(x+y—1)(z+1)
pp=y-—xz+y+tx—1)(z+1)
i p,=y—x+(y+x—1)(z+1) (2.5.15)
[The example is constructed in such a way that splitting is needed: modulo the

first factor of my, namely y— x, the gcd is z+ 1, while it is constant modulo the
| second factor, y+ x— 1. Correspondingly, there are two branches.

> rg :=RegularGed(p,, p,, z, rc, R);

rg=[[(y+x—1)z+ 2y—1, regular chain], [3y2+ (-2x— 2)y—><2

+ 2 x, regular_ cham]]
Check the first case.
> g,, rcl: —op(rgl)
eq, :=Equations(rcl, R);
SparsePseudoRemainder((2x4+1) eqll, rcx, R)

(2.5.16)

gy, rel == (y+x—1)z+2y—1, regular _chain
eq, = [(2x— 1) y+x—4, x2—2]
-7x+7y (2.5.17)
‘Note that rcy is not normalized. The SparsePseudoRemainder computation shows
| that it corresponds to the "modulo y— x" branch.

> u :=SparsePseudoRemainder(gl, rcl, R);

factor(u)
u=-4zx—4x+9z+9
-(z4+1) (4x—9) (2.5.18)

[This is the desired result, up to a multiplicative factor -4 x+ 9 which is a unit
modulo rc;.
Check the second case. Again, the regular chain rc, is not normalized, and the

SparsePseudoRemainder computation shows that it corresponds to the "modulo
Ly + x— 1" branch.

> gy, FC2:=0p(rg,);
eq, = Equations(rc2, R);
SparsePseudoRemainder((2x+1) eqzl, rcx, R)

g,, 1C2 = 3y2+ (-2x— 2)y—x2+ 2 x, regular chain
eq, = [(2x— 1) y—3x+ 5,x2—2]

_ Tx+7y—7 (2.5.19)
Check that g, is a unit modulo rc,. First, reduce it modulo rc,. Then ask if the

result is invertible modulo rc,. The answer proves it is.

> h :=SparsePseudoRemainder(g,, rc2, R);

out :=Inverse(h, rc2, R);
ih :=out, ;
L
SparsePseudoRemainder(h ih, rc2, R)
h:=-72x+113
out:= [[[113+ 72 x, 2401, regular chain]], []]
ih:=1134+72x
N 2401 (2.5.20)

2.6 Solving systems of equations incrementally

The central command of the RegularChains library is the Triangularize command.
The algorithm behind this command solves systems of equations incrementally. To
do this, we rely on an important operation Intersect, which computes the
common part of a hypersurface and the quasi-component of a regular chain. See
the help page of Intersect for a more formal description of it. Let us now illustrate
how to use it to solve a polynomial system incrementally.

Define a ring of polynomials.

vars = [x, y,]

|:> vars := [x, vy, z];R := Polynom al R ng(vars);
R := polynomial ring (2.6.1)

Define a set of equations.

[> Sys = [x"2+y+z-1, x+y"2+z-1, x+y+z"2-1];
Sys = [x2+y+z—1,y2+x+z—1,22+x+y—1] (2.6.2)

Define the empty regular chain.

|:> rc := Empty(R);

rc := regular chain (2.6.3)
Solve the first equation.
> dec := Intersect(sys[1], rc, R);map(Equations, dec, R);
dec = [regular chain]
[+y+z—1]] (2.6.4)

Solve the first and second equations.

> dec := [seq(op(Intersect(sys[2], rc, R), “in (rc, dec))]; mp
(Equations, dec, R);
dec := [regular chain, regular chain]

[Ix—y YV +y+z-1] [x+y— 1,y —y+2]] (2.6.5)

Solve the three equations together.

(> dec : = [seq(op(lntersect(sys[3], rc, R), "in (rc, dec))]; D splay
(dec, R);
dec := [regular chain, regular chain, regular chain, regular chain]
x—2=0 x=0 x—1=0 x=0
y—z=0 ,1 y=0 ,{ y=0 ,1y—1=0 (2.6.6)
Z+2z2-1=0 z—1=0 z2=0 z=0

3. Real solutions of polynomial systems

The RegularChains library offers a variety of tools to compute the real solutions
of polynomial systems. A first group of commands (namely RealTriangularize,
LazyTriangularize and SamplePoints) deals with arbitrary semi-algebraic
systems. That is, given any system S of polynomial equations, polynomial
inequations and polynomial inequalities (strict or large) these commands produce
information about the real solutions of this system.

RealTriangularize returns a full description of the real solutions of S: it computes
simpler systems S,,..., S, such that a point is a solution of S if and only if it is a

solution of one of the systems S,,..., S,. Each of these systems

has a triangular shape and remarkable properties: for this reason it is called a
regular semi-algebraic system and the set of the S,,..., S, is called a full triangular

decomposition of S.

LazyRealTriangularize allows the user to compute a triangular decomposition of
S in an interactive manner. This feature is particularly well adapted for systems
that are hard to solve. For such systems, LazyRealTriangularize returns the
components of S of maximum dimension together with unevaluated recursive
calls, such that, when fully evaluated, these calls produce the other components of
S (which are generally harder to compute).

SamplePoints is even a lazier (and thus much cheaper) way of solving:
it produces at least one sample point per connected component

of the solution set of S. This way of solving is often sufficient in practical
problems.

A second group of commands compute the real solutions of particular

types of polynomial systems (such as systems with finitely many complex solutions
or parametric systems) or provide advanced features (such as
CylindricalAlgebraicDecompose, LinearSolve, Projection, Difference). All these
commands except RealRootClassification and RealComprehensiveTriangularize
are located in the subpackage SemiAlgebraicSetTools.

3.1 RealTriangularize: solving systems of equations,

inequations and inequalities
Consider the generic equation of degree two.

> R := Polynom al Ring([x, ¢, b, a]);

sys : = [a*x"2+b*x+c=0];
R := polynomial ring
Sys = [ax2+bx+c=0] (3.1.1)

Compute a triangular decomposition of the 4-variable hypersurface it defines.

> dec : = Real Triangul ari ze(sys, R);

dec := [regular semi algebraic system, regular semi algebraic system, (3.1.2)
| regular semi_algebraic _system, regular semi_algebraic_system]

> Display(dec, R);

2ax+b=0 bx+c=0

,{4ac—b*=0 ,{ a=0 . (3.1.3)
a+0 b=+0

ax2+bx+c=0

—4ca+b2> Oanda # 0

Q T aQ
I
o o ©

Consider the record output format.

[> Real Tri angul ari ze(sys, R, output=record);
ax*+bx+c=0 2ax+b=0 bx+c=0 c=0
—4CG+b2>O , 4ac—b2=0) b+0) b=0 (3.1.4)
a#0 a+0 a=0 a=0
Next, we consider a system of equations, inequations and inequalities.
|:> R := Polynomal Rng([y, x, b, a]);
R := polynomial ring (3.1.5)

[> sys = [x"3-3*y"2*x+a*x+b=0, 3*x"2-y"2+a=0, 1l-y*x>0, y<>0];
| Sys = [x3—3y2x+ax+b=0,3x2—y2+a=0,0<—yx+1,y¢0] (3.1.6)

> out := Real Triangul arize(sys, R);
| out = [regular semi_algebraic system, regular semi_algebraic _system] (3.1.7)

(> Di splay(out, R);
_ V—3xX—a=0
8xX°+2ax—b=0
-yx+1>0
4a°+27b*>0and4b’a’— 164"+ 27b* — 512> — 4096 + 0

. (3.1.8)

xy+1=0
(2a°+18b%>+32a)x+ (-a*—48)b=0
27b* +4a®p* —16a* - 512a% — 4096 = 0

Consider now an example which has finitely many complex solutions.
[> R:= Polynonial Ring([x, vy, z]):
Define a set of equations.

[> sys := [x"3 +y +2z -1=0, x + y*"3 + z -1=0, x +y + z"3 -1=0];
SysS = [x3+y+z—1=0,y3+x+z—1=0,z3+x+y—1=0] (3.1.9)

Compute the real solutions of sys.

> dec := Real Triangul ari ze(sys, R);

dec := [regular semi algebraic system, regular semi _algebraic system, (3.1.10)
regular semi_algebraic system, regular semi _algebraic system,
regular semi _algebraic system, regular semi _algebraic system,

| regular semi_algebraic system]

> Display(dec, R);

x—2=0 x—1=0 x=0

y—z=0 ,1y+1=0 , y=0 , (3.1.11)
2+2z-1=0 z—1=0 z—1=0

x+1=0 x—1=0 x=0 x—1=0

y—1=0 , y=0 ,1y—1=0 ,1y—1=0

z—1=0 z=0 z=0 z+1=0

Returning now to systems which have infinitely many complex solutions, consider
now the intersection of the algebraic surfaces Sofa and Cylinder from the
Algebraic Surface Gallery. As their names suggest, they are respectively the
equations of a sofa and a (sort of) cylinder. One expects to find a real curve in
their intersection, as we shall verify.

> R := Polynomal Ring([z, vy, X]);
Sofa := x"2 + y*"3 + z"5;
Cyl = x4 + zh2 - 1;
R := polynomial ring
Sofa = 25+y3+x2
i Cyli=x"+2"—1 (3.1.12)
> Real Tri angul ari ze([Sofa, Cyl], R, output=record);

(3.1.13)

(C-—2x*+1)z+y+x*=0
Y+ 27+ —5x% 110X - 10 +6x —1=0
x <1 , (3.1.13)
x+1>0

X245t~ 120

(F-2x"+1)z—x*=0 (xX-2x*+1)z+x*=0
Yy +2x=0 : y=0 :
X2—axt45xt—1=0 X2 =4 +5x —1=0
z=0 z=0
y+1=0 ,1y+1=0
i x+1=0 x—1=0

3.2 LazyRealTriangularize: interactive solving for
systems of equations, inequations and inequalities

Consider again the generic equation of degree two. Now we solve it interactively.

> R := Polynom al Ring([x, ¢, b, a]);

sys := [a*x"2+b*x+c=0];
R := polynomial ring
sys = [xX"a+xb+c=0] (3.2.1)

Use LazyRealTriangularize to start the decomposition.

[> dec : = LazyReal Tri angul ari ze(sys, R);

[[ax2+bx+c= O]]
dec i LazyReaITriangularize([a =0,a X +bx+c= 0], polynomial_ring)
LazyRealTriangularize([-4ca+ b* = 0,a X +bx+c= 0], polynomial_ring)

[]

Go one step further, computing components in lower dimension.
[> dec2 := val ue(dec);

[[x*a+xb+c=0]]
[[xb+c=0,a=0]]

LazyRealTriangularize(la=0,b=0,xb+c=0, X*a+xb+c= 0],
dec2 :=
[[2ax+ b= O,4ac—b2= 0]]

LazyRealTriangularize([a=0, -4 ac+ b = 0,4ac-— b = 0,2ax+b=0, X a+
[]

Go the last step, computing components in dimension zero.

> val ue(dec?);
[[x*a+xb+c=0]] 0<-4dac+b*Aa+0
[[xb+c=0,a=0]] b+0 0
a=
[[c=0,b=0,a=0]] b=0
(3.2.4)
2
2 == 4 — =
[[ax+b=0,4ac—b O]] a+0 dac+b =0

[[c=0,b=0,a=0]] a=0

i [] otherwise

If one is only interested in computing the main components, the list output format
does the job.

|:> dec := LazyReal Triangul ari ze(sys, R, output=list);
dec := [regular semi_algebraic_system] (3.2.5)

|_> Di spl ay(dec, R);

ax2+bx+c=0
, (3.2.6)
-4ca+ b >0anda # 0

Another way to conduct the computation interactively is to use the record output
format.

[> dec := [LazyReal Tri angul ari ze(sys, R, output=record)];
ax*+bx+c=0
dec := 4dca+b*>>0 ,LazyRealTriangularize([a=O,ax2+bx (3.2.7)
a+0

+c=0], polynomial ring, output = record), LazyRealTriangularize([
~4ca+b*= 0,a X +bx+c= 0], polynomial ring, output = record) |

Go one step further.

[> dec2 := val ue(dec);
axX*+bx+c=0 bx+c=0
dec2 = dca+b*>0) b+ 0 , (3.2.8)
a+0 =0

LazyRealTriangularize([a=0,b=0,bx+¢=0, a X +bx+c= 0],

2ax+b=0
polynomial ring, output = record), { 4ac—b*=0
a+0

LazyReaITriangularize([a =0,-4ac+ b* = 0,4ac— b* = 0,2ax+b
. =0,a X +bx+c= 0], polynomial ring, output = record) |

Go the last step.

[> val ue(dec2);

ax*+bx+c=0 bx+c=0 c=0
4ac+b*>0 , b+0 ,1b=0 (3.2.9)
a+0 a=0 a=0

2ax+b=0
4ac—b2=0
a+0

QT 0
I

Il
o o ©

Computing a lazy triangular decomposition is usually much less expensive than

computing a full one. The following is an example.

> unassign('u'); variables :

[X, u, v,
R : = Pol ynom al Ri ng(vari abl es);
sys = [u*x"2+v*x+1=0,

Computing a lazy decomposition takes than a second.

|:> dec

V*XA3+WFX+u=0, WrXx"2+v*x+u<=0];
variables = [x, u, v, w]
R := polynomial ring
Sys = [ux2+vx+ 1= O,vx3+wx+ u=20, wx2—|—vx+ u< O]

: = LazyReal Tri angul ari ze(sys, R output=list);

dec = [regular semi _algebraic system]

Computing a full one does not terminate within an hour.

(3.2.10)

(3.2.11)

3.3 SamplePoints: computing at least one point per
connected component

Consider again the generic equation of degree two.

> R :
F :

Compute sample points of the 4-variable hypersurface it defines.

x= -1
c=1
2
b=0
a=-+
2

Pol ynom al Ri ng([X,
[a*x"2+b*x+c=0] ;
R := polynomial ring
F = [ax2+bx+c= O]

C,

b, a]);

> S : = Sanpl ePoi nts(F, R, output=record);

x= -1
c=-+
2
b=0
a=+
2

(3.3.1)

(3.3.2)

X = x=0 x=0 x=0

x=0
c= c=0 c=0 c=0

c=0
b=—l ’ b=l ’ b=0 ’ b=0 ’ b=0

2 2

a=0 a=-+ a=+
] a=0 a=0 B 2 2

Consider the Tacnode curve. We look for sample points in the middle of the right
branch.

> R :
F :

Pol ynom al Ring([y, X]);
[YyN4- 2% yN3+yN2- 3* XN 2% y+2* xN4] |
R := polynomial ring
] Fim[2xt 4y = 3x2y— 2y +) (3.3.3)

[> with(plots):
implicitplot(F, x=-2..2, y=-1..3, nunpoi nts=1000000);

B Sampl ePoi nts([op(F), 2*x > 1, x < 1], R, output=record);

_[13 105} =[237 119]
32’ 256 128" 64
: (3.3.4)
x=3 =3
4 4

3.4 Isolating the real roots of a regular chain

Isolating real roots

| Define a simple regular chain.

> R := Polynomal Ring([y, X]):

| rc := Chain([2*x"2-1, 3*y"3-x], Empty(R, R):
| Isolate its real roots.

> rr := Real Rootlsolate(rc, R);
rr:= [box, box] (3.4.1.1)

;Display the box values.
> solution := map(BoxValues, rr, R);

solution [yzz[_20727073'__20727063}’X==[_46341' (3.4.1.2)
| 33554432 ° 33554432 65536
741455 H [=’:10363531 10363537] X=|:741455
1048576 || 16777216 16777216 | 1048576 °
46341 |
65536 | }

Each element of the list is called a box. Each box encodes a real root, in the
sense that it contains exactly one real root of rc. The RealRootlsolate command
returns all real roots of a given regular chain in this way. Thus, it is guaranteed
| that no root is lost. In the example, there are two real roots.
> solution[1]; solution|2];

[y— 20727073 20727063 } X = [_ 46341 741455 ”

33554432 " 33554432 65536 ° 1048576
Thus, the first root satisfies % <x<land 0<y<1, and the second one

(3.4.1.3)

10363531 10363537 } x=[741455 46341]
16777216 ° 16777216 | 1048576 ° 65536

satisfies -1 <x<—% and -1 <x<0.

The BoxValues command returns a list of the form v=1i, where v is a variable and
i is either a rational number or an open interval encoded by a list. The reason
why singletons are returned is that rational solutions are sometimes hit, as in the
following example.
>rc := Chain([2*x-1, 3*y"3-x], Empty(R), R):
rr .= Real Rootlsolate(rc, R):

map(BoxVal ues, rr, R);

H _ [577053 288527 } X = 1
i Y= 11048576 524288 | * 2
| The Display command prints the isolated real roots in a pretty manner.

> Display(rr, R);

(3.4.1.4)

(3.4.1.5)

_ [577053 288527
Y=171048576 " 524288

x= 1
2

(3.4.1.5)

Choosing a precision

The isolating boxes can be as small as needed. The abserr option allows you to
obtain boxes whose widths are smaller than or equal to a certain absolute
precision.
>rc := Chain([2*x"2-1, 3*y"3-x], Empty(R), R:
rr := Real Rootlsolate(rc, R abserr = 1/10710):
map(BoxVval ues, rr, R);
H _ [_ 2716737851577 10866951406269} X = [_ 759250125
4398046511104 ° 17592186044416 | 1073741824 °
- 97184015999 H [_ [2716737851567 2716737851577]
137438953472 || 4398046511104 ° 4398046511104 |
_ [97184015999 759250125 m
L 137438953472 1073741824
> eval (9% ;
[ly=[—0.6177146705, —0.6177146705], x=[—0.7071067812, (3.4.2.2)
—0.7071067812]], [y=10.6177146705, 0.6177146705], x
= [0.7071067812, 0.7071067812]]]

(3.4.2.1)

1
3
l
In fact, this involves the algebraic numbers | % and —“32
i 1
3
1
1 2
> evalf — |; evalf| | —— ;
/7 :
0.7071067810
| 0.6177146705 (3.4.2.3)

3.5 Isolating and counting the real zeros of a semi-

algebraic system with finitely many solutions

Recall that a semi-algebraic system (SAS) is a system containing polynomial
equations, polynomial (non-strict or/and strict) inequalities, and polynomial
inequations, which are denoted by F, N, P, and H, respectively. For example, the

system {xz —|—y2 —1=0,xy—1=0,x>0,y> 0} is represented by

[xA2+yn2-1, 2*x*y-1]:
[x]:
[y]:
[1:

ITITUuzZzT

Define the polynomial ring
|:> R := Polynom al Ring([x, VYy]):

The RealRootlsolate command isolates all the real zeros of a given semi-algebraic
system.

(> rr := Real Root | sol ate(F, N, P, H R;
solution := Display(rr, R);
T = [box]
«=[5.3]
_ 8" 4
solution = (3.5.1)

=[£ 91 }

i 64" 128

The RealRootCounting command computes the number of distinct real solutions
of a given semi-algebraic system.

|:> Real Root Counting(F, N, P, H R);
1 (3.5.2)

Consider a less trivial example.

(> R := Pol ynom al Ring([z, vy, X, c]):
F :=[1-c*x-x*y"2-x*z"2, 1l-c*y-y*x"2-y*z"2, 1l-c*z-z*x"2-z*yn2, 8*
cN6+378*cN3-27] :
N:=1]:
P:=1]c, 1-c]:
H:=1]:
Real Root Counting(F, N, P, H R);
N 4 (3.5.3)

If the input system has infinitely many complex solutions (that is, it is positive-
dimensional over the complex numbers), RealRootCounting will return a message
suggesting to call RealRootClassification instead.

> R := Polynom al Ring([x, VYy]):
Real Root Counti ng([x*2+y*2], []1, [1], []1, R;
Error, (in ReqgularChains:-Sen Al gebraicSetTool s: - Real Root Count i ng)
[systemis not zero-dinensional: try Real Rootd assification

3.6 Partial cylindrical algebraic decomposition

The command RealRootClassification makes use of Partial Cylindrical Algebraic
Decomposition (PCAD). The calling sequence is
PartialCylindricalAlgebraicDecomposition(p, Ip, R), where R is a polynomial
ring, p is a polynomial in R, and Ip is a list of polynomials in R representing
positivity conditions. The output of the function is a list sp of sample points. Each
sample point is represented by a list of rational numbers, as many as there are
variables in R. Each inner list gives the coordinates of a sample point of a (real)
open connected component of the (real) space decomposed by the equation p= 0.
Moreover, sample points which do not satisfy g > 0 for all polynomials g € Ip are
| discarded.
> R := Polynomial Rng([x, vy, t]):

Partial Cylindrical Al gebrai cDeconposition(y, [], R);

Partial Cylindrical Al gebrai cDeconposition(y, [Xx], R;

Partial Cylindrical Al gebrai cDeconposition(x*y, [], R);

Partial Cylindrical Al gebr ai cDecoer03| tion(x*y, [x], R;

[o,_%,o:, _o L0]
43333 4
%,_%,0, % %,0 (3.6.1)

As a more advanced example, compute sample points for the polynomial system
of equations sys below which in addition make each polynomial in sys positive.
> R := Polynom al Ring([x, Yy]):

Sys = [-x"2-y+1, x+y"2-1, -x"2+y"2]:

nops(sys)
sp:==PartialelindricalAlgebraicDecomposition[sysj,sys,RJ
j=1
. 17 221 287 197 13
i P = [0 8 } [512' 256 H512' 16 H (3.6.2)
| Check the result.
> for i to nops(sp) do
print(eval (sys, [x = sp[i][1], y = sp[i][2]]))
end do;
[25 225 289}
8 64 64
[507191 45121 280635}
262144° 65536 262144
10343 23 134247
262144° 512" 262144} (3.6.3)

Plot these sample points.
> wth(plots):
colors := [blue, green, red, brown]:

curves = seq(inmplicitplot(sys[i], x =-3 .. 3, y=-4.. 3,
color = colors[i], nunmpoints = 5000), i =1 .. 3):

points : = pointplot(sp, color = colors[4]):

di splay([curves, points]);

_Compute and plot sample points for the same system sys but without any sign
| constraints.
nops(sys)
> Sp = PartialelindricalAlgebraicDecomposition[H SYS;, [L R
i=1
points : = pointplot(sp, color = colors[4]):
di splay([curves, points]);

3.7 Cylindrical algebraic decomposition

Cylindrical Algebraic Decomposition (CAD) is a fundamental and powerful tool for
studying systems of equations, inequations and inequalities.

Our algorithm is different from the traditional algorithm of Collins. It first
computes a cylindrical decomposition of the complex space, from which a CAD of
the real space can be easily extracted.

Consider the hyperbola xy—1 = 0.

> R :
F :

Pol ynomi al Ring([y, X]);
[y*x-1];

R := polynomial ring
F:=[xy—1] (3.7.1)

A cylindrical algebraic decomposition adapted to the polynomial xy — 1 can be
computed by the command CylindricalAlgebraicDecompose as follows:

[> outcad : = Cylindrical Al gebr ai cDeconpose(F, R, output=piecew se);
1
1 < =
Y X
1 y=l x<0
X
1
1 — <
N y
outcad = 1 x=0 (3.7.2)
1 y<l
X
1
1 = —
y " 0<x
1
1 — <
N y

The output CAD is described by a nested piecewise function. The outmost
piecewise function is a function with three conditions x < 0, x=0, and 0 < x.
Each of the conditions has a corresponding expression, which is again a piecewise
function. The output could be read from top to bottom and from right to left.

One can see that the CAD consists of seven cells.

For example,

x<O0andy < % describes one cell of the CAD, where

[regular chain, [[-1,-1],[-2,-2]]]
represents a sample point in this cell.
This sample point is represented by a regular chain and an isolating box such that

inside this box there is one and only one root of this regular chain.

We plot the hyperbola and all the sample points of the CAD adapted to this
hyperloa as follows.

[> with(plots):
Sp ::[['1! '2]’ ['1! '1]’ ['11 0]’ [O’ 0]1 [1’ O], [1’ 1]’ [11

2] 1:
points : = pointplot(sp, color = blue):
curve :=inplicitplot([x*y-1, x], x =-5.. 5,y =-5.. 5

color=[red, black]):
di spl ay([curve, points]);

The piecewise format is good when the output has few cells. When many cells
are present the 'output'='cadcell"and 'output'='rootof' formats are useful.

(> R Pol ynom al Ring([x, ¢, b, a]);
F := [a*x"2+b*x+c];
cad := Cylindrical Al gebrai cDeconpose(F, R, output = cadcell);

R := polynomial ring
F := [x2a+xb—|—c]
cad = [cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, (3.7.3)

cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell,
cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell,

cad cell, cad cell, cad cell, cad cell, cad cell, cad cell]

|:> nops(cad) ;

27

(3.7.4)

The output consists of 27 cells, which can also been displayed as so-called Taski

Formulas.

_? Di splay(cad, R);

b __ b b
X=X X < > 4 X = > g 2a<x
b2 2 2 2
c< c= b c= b° c= 2
! 4a ! 4a ’ 4a
b=b b=b b=b b=b
a<0 a<?0 a<?o a<o
b+ -4ca+b° b+ -4ca+b’
X < X =
2a 2a
2 2
b b
4a<c ' 4a<c
b=b b=b
a<?0 a<?0
2 \/—2
-b++ -4ca+b <x/\x<—b+ -4ca+b
2a 2a
2
b
— <)
4a ¢
b=b
a<?o
_ b+ ~4ca+b° b+ ~4ca+b°
X = - - <X
2a 2a
2 2
b b
— <) — <
4a ¢ 4a ¢
b=b b=b
a<0 a<0

7’

(3.7.5)

c _ _C _C =
X < b X = b b<X X=
c<O0
c=cC , c=cC) c=cC y
b<0 b<0 b<0 b=0
C C
= = < -— =
X=X X X b X b
c=0 O0<c
, , =C , c=cC
me/—ALccz—irb2
c X< -
-= <
b X 2a
2
c=cC) C<b_ ;
0<b ta
-0 b=b
O0<a
X=_b+\/—4ca+b2
2a
2
b
< — ’
¢ 4a
b=b
O0<a
> 2
_b+y-4ca+b” _ _ -b+yJ-4ca+b
2a 2(1
2
b
< 2
¢ 4a
b=b

O0<a

_ -b++ ~4ca+ b’ -b+ ~4dca+b’
X = <X
2a 2a
2 2
b b
< —) < —)
¢ 4a ¢ 4a
b=b b=b
0<a 0<a
b __ b b _
X < > a X = 2 a > a < X X=X
B2
oo b oo b .o b wa <¢C
4a ! 4a ! 4a !
b=hb b=b b=b b=b
O0<a 0<a 0<a 0<a

Another important feature of the CAD command is the fact that it can take a list
of semi-algebraic systems as input. This list of semi-algebraic systems represents
a DNF quantifier free formula, that is, a disjunction of semi-algebraic systems.

Consider the union of a cirle and a line.

> Circle := x"2+y"2-1=0;
Li ne : = x-2=0;
wi th(plots):
implicitplot([Circle, Line], x =-1.. 3, y =-1.. 2, color=
[red, blue]);
Circle:=x2+y2—1=0
Line:==x—-2=0

Compute a CAD of the union of Circle and Line.

> R := Polynomal Ring([y, X]);
cad : = Cylindrical Al gebrai cDeconpose([[Circle], [Line]], R
out put =cadcel |) ;
R := polynomial ring
cad := [cad cell, cad cell, cad cell, cad cell, cad cell] (3.7.6)

[> D spl ay(cad, R);
y=0 y=-J-x+1 y=v-x+1 y= (3.7.7)
x=-1 —-1<xAx<1 -1<xAx<l1 X =
y=Yy
X =2
Each cad_cell has a sample point associated with it.
> sp : = map(Sanpl ePoints, cad, R): D splay(sp,R;
=0 =—1 =1 =0 =0
Y , Y , Y , Y , Y (3.7.8)
x= -1 x=0 x=0 x=1 X=2

Last but not least, the CAD command is back engine of SoveTools:-
SemiAlgebraic.

> Sol veTool s: - Sem Al gebrai c([x*2+x-¢>0], [c, X]);

1 1 1 1 1 Jvadc+1 1
- — = = - — #+ - — - — < - — = — - — 7
[c< 4,x x|, |c 4,x > [4 <c X > > l[4 (3.7.9)
<c,——§ +—“402 1 <xH

> cad : = Cylindrical Al gebrai cDeconpose([[x"2+x-c>0]],
Pol ynom al R ng([x, c]), output=rootof);

1 1 1 1 1
= < - — = = - — p— -— < < - = 7.
cad c 4,x x|, |c 4,x¢ 2l n C, X > (3.7.10)

3.8 Solving a linear semi-algebraic system

The input linear semi-algebraic system:

> S :=[f00 c, f10 = ¢ + cx1, f01l = c + cx2,
f11 c + cx1 + cx2 + cx1x2,
cx1x2 <= 0];
S=[f00=c fl0=c+cx1,f0l =c+cx2,fll1 =c+ cx]l +cx2 + cx1Ix2, (3.8.1)
cx1x2 < 0]

Define the elimination order (descending order).

|:> R := Pol ynom al R ng([cx1x2, cx1, cx2, c¢, f00, f0l1, f10, f11]):

Call LinearSolve to eliminte the variables.

The output is a set of equivalent linear equationsand inequalities sorted in
ascending order according to the larget variables appearing in the constraints. It
provides conditions on lower order variables such that higher order variables
having solutions.

In other words, the projection of the solutions of input system S onto any lower
dimensional space, say the space formed by the smallest i variables, are exactly
the solutions of those constraints in the output which only involve the smallest i
smallest variables.

> R := Polynom al R ng([cx1x2, c¢cx1, cx2, ¢, f00, fO01, f10, f11]):

result := LinearSolve(S R);
result .= [f00 < -f11 4+ f10+ f01, c = f00, cx2 = f01 — f00, cx1 = f10 — f00, (3.8.2)
cxIx2=f11—-f10—- f01 + f00]

3.9 Verifying the output of different real solvers

On a given input polynomial system, two solving tools may produce correct results
that look fairly different. Proving that these two results, say S1 and S2, are
equivalent can be a very complex task. Here’s an example.

Given a triangle with edges a, b, ¢ (denoting the respective lengths by a, b, c as
well) the following two conditions C1,C2 are both characterizing the fact that the
external bisector of the angle of a,cintersects with b on the other side of a than
the triangle:

We set S1 and S2 up first. S1 is the disjuction of C1 and C2.

_>C1::[a>0, b>0, c>0, a<b+c,
b<a+c, c<a+b br2+ar2 - cr2<=0];

C:.=[a>0, b>0, c>0, a<b+c
b<a+c, c<a+hb,
c*(b”"2 + a”2 - cM2)"2 < a*bnh2*(2*a*c - (c"2 + a*2 - b"2))]:

Si:=[Cl, C2];

S2 .= [a-c<0, a >0, b>0,
c>0, a<b+c, b<a+c, c<a+b];

Cl := [O<a,0<b,0<c,a<b+c,b<a+c,c<a+b,az+b2—czsO]
S1 :=[[O<a,0<b,0<c,a<b+c,b<a+c,c<a+b,az+b2—02£O],
2
[O<a,0<b,0<c,a<b+c,b<a+c,c<a+b,c(a2+b2—cz)

<ab2(—az+20a+b2—02)“
N S2:=[a-—¢c<0,0<aq,0<b,0<c,a<b+c¢cb<a+c c<a+b] (3.9.1)

Compute regular semi-algebraic system representations decl (resp. dec?2) for S1
(resp. S2).

> R := Polynom al Ring([a,b,c]):
decl := map(op, nmap(Real Triangularize, S1,R));

dec2: = Real Tri angul ari ze(S2, R);
decl := [regular semi algebraic system, regular semi _algebraic system,
regular semi_algebraic system]
dec2 := [regular semi _algebraic system] (3.9.2)

Compute the differences: S1\ S2 and S2 \ S1.

(> Differ ence(decl, dec2,R);

i [] (3.9.3)
> Difference(dec2,decl, R);
i [] (3.9.4)

3.10 Computing the projection of a semi-algebraic set

In the following problem, we are interesting in determining sufficient and
necessary conditions on the variables al, a2, for the prescribed semi-algebraic
system to have solutions in rl, r2, x1, x2, el, e2. This question is equivalent to
compute the standard projection of the corresponding semi-algebraic set on the
(al, a2)-plane.

Problem: 3(rl, r2, x1, x2, el, e2) (A f=0 A _p>0)
N feeqgs p € pie
> vars :=[rl, r2, x1, x2, el, e2, al, a2];

egs = [

rinzg - r272 - eln"2 + e2"2 + x172 - 2*x1*x2 + x2"2,
2*rl1*r2 - 2*el*e2,

-rl + el + x1*a2 - x2*a2,

-r2 + e2 - xl*al + x2*al,

rinz2 + r272 + x1"2 + x2"2 + el”2 + e2"2 - 1];

pie :=[rl, -el];

inegs :=[];

nie :=1[];

parans : = [al, a?];

R : = Pol ynom al R ng(vars):

proj := Projection(eqs, nie, pie, inegs, 2, R);

vars = [rl, r2, x1, x2, el, e2, al, a2]
eqs=[-el*+e2* + r1* —r2* + x1* - 2x1x2 + x2% -2ele2+2rl 12,
x1a2—x2a2+el —rl, -x1al +x2al +e2—r12,el*+e2*+ ri*+ r2*
+x1%+x2* 1]

pie = [rl, -el]
ineqs = [|
nie == []
params := [al, a2]
proj := [regular semi _algebraic system, regular semi_algebraic system](3.10.1)

Show the result:
> D splay(proj, R);
al =0

a2 < —1 ,al*+a2*—1>0andal # 0Oanda2 = 0| (3.10.2)
oraZ—1>0

4. Linear algebra over towers of (field)
extensions

Regular chains encode towers of transcendental and algebraic extensions of the
base field. In practice, these towers themselves are not always fields and may
have zero-divisors. Many standard algorithms (for example, for solving systems of
linear equations) require that the coefficient ring be a field. This difficulty is
overcome by means of the so-called D5 Principle. This principle is at the core of
the theory of regular chains and allows us to generalize many algorithms which
are a priori restricted to coefficients from a field.

The MatrixTools submodule applies the D5 Principle to algorithms for solving
linear systems with coefficient rings encoded by regular chains. Below, use of this
submodule is demonstrated by two examples. As discussed earlier regarding
polynomial gcd computations, splitting naturally occurs when computing modulo
regular chains. Sometimes, split results can be recombined as illustrated below.

4.1 Automatic case discussion and recombination (1)

Assume that there are two algebraic entities, y and z; that they have the sa
me square; and that z is a 4th root of -1. Suppose you need to perform algebraic
| computations with y and z.
> R := Polynom al Ring([y, z]):
rc := Chain([z"4+1, y*2-z"2], Empty(R), R):
Equations(rc, R);

[y* — 2% 24+ 1] (4.1.1)

| For example, you may want to compute the inverse of the following matrix.
l y+2z
0 y—z

> A=

Clearly, the result depends on whether y and z are equal or not. Note that from
the assumptions above, neither y=2z nor y=-z can be deduced. When y # z, the
matrix A has an inverse. When they are equal, the matrix A is singular. These

| facts are detected automatically by the command Matrixinverse.

> result := Matrixlnverse(A rc, R;
1 0
, 1 y+2z
result := 2 |, regular_chain||, | |"nolnv", , (4.1.2)
0 ? 0 y—z

regular chain

Check the first result. Note the use of the command MatrixMultiply in order to
. multiply two matrices modulo a regular chain.
> B, rcl:=op(result[l][1]);

Equations(rcl, R);

MatrixMultiply(B, A, rcl, R)

1 0
B, rcl = 0 2_3 , regular chain
2
ly+2z 2t +1]
Lo (4.1.3)
i 0 1

> rc2:=result[2][1][3]; Equations(rc2, R);
rc2 = regular _chain

i ly—z 2" +1] (4.1.4)
You can see that the computation (and the regular chain) was split into two
branches. The first one corresponds to y+ 2z =0, and in that branch the matrix is
invertible. The second branch corresponds to y= 2z, and in that branch the matrix
Lis not invertible.
Consider the matrix M below and compute its inverse modulo the regular chain
rc. Here again, computations split. However, the matrix M is invertible in both
| cases.
>M:= Matrix([[21, y+z], [2, y-2]]);

result := Matrixlnverse(M rc, R);

1 + 2z
M = Y

2 y—z

10 o

result = 3 ° | regular chain|, 3 3
Y _Z Z

2 4

[]

;Doubl-e check this result.
> op(result[1][1]);

1 0
3 2_3 , regular chain
2

B unassign('N"');
N, , rcl:= op(result[l][l]);

Equations(rcl, R); Ny;
MatrixMultiply(Nl, M, rcl, R)

e 3 .
Ny, rel = 3 20 | regular chain

> Ny, rc2 :=op(result[1][2]);

Equations(rc2, R);
MatrixMultiply(NZ, M, rc2, R)

1
0 2
N,, rc2 := 3 3 | regular chain
£ Z
2 4
4
ly—2, 2"+ 1]

, regular _chain

7’

(4.1.5)

(4.1.8)

(4.1.7)

(4.1.8)

10
i 01
Since the matrix M is invertible in both branches given by the regular chains rc,

and rc,, it is natural to ask whether there is a "generic" answer that would hold

for both cases. The answer is yes. Technically speaking, one can observe that the
Chinese Remainder Theorem applies since the (saturated) ideals of rc; and

rc, are relatively prime. The command MatrixCombine implements this

| recombination.
> combined :=MatrixCombine([rc1, rc2], R, [va Nz])

(4.1.8)

3 3
yzo 1 _yz 1
2 2 4 4
combined = , regular chain (4.1.9)
Lyp 35 Ly2,3;
4% Ty g ¥t g

;Check that the ab-o-\}e matrix times M gives the idenﬁty matrix modljl_o rc.
> MatrixMultiply(conbined[1][1], M conmbined[1][2], R);
1 0

4.1.10
01 ()

4.2 Automatic case discussion and recombination (I1)

Can there be several cases in the output of the command MatrixCombine? In
other words, is it possible that this command fails recombining several cases into
one, even if the Chinese Remainder Theorem applies? Yes, this can happen, for
algebraic reasons that shall be explained below. For starters, consider one of the
| previous polynomial systems.

> sys = {x+y+z"2-1, x+y"2+z-1, x"2+y+z-1}:

R := Polynomal Ring([x, vy, z]):
| := Triangul arize(sys, R normalized = yes);
map(Equations, |, R);
| := [regular chain, regular chain, regular chain, regular chain]

i [[x—2zy—22+22z-1], [xy,z— 1], [x y— 1,2, [x— 1, y, z]] (4.2.1)

| Next, generate four random 2 x 2 matrices with polynomial entries.

> A = [seq(Matrix([seq([seq(randpoly([x, y, z], degree = 1), j =1
2)], i =1.. 2)]), k=1.. 4];

68x+69y+562z+89 65x+64y—332—76
96x—8y+792z—64 -75x—81y+982z+9
18x—94y—89z—1 85x—50y+80z— 36
“9x—73y—22+29 25x+59y+31z—30

, (4.2.2)

7’

| 57x—60y+72z+41 34x+85y+61lz

| 96x+48y+85z—1 26x+28y—3z—49
| 11x—79y—272z+58 -85x—79y+91z—98
| 44x—16y+2z-46 -69x—30y—37z+12

_Attempt the recombination of the four cases given by the regular chains in A,
Land observe that MatrixCombine produces two cases.

> conbi ned : = MatrixConmbine(l, R A);
-88y+69 268y— 183
49y—2 36 y— 57

7

combined = , regular chain |, (4.2.3)

~1862°— 1792+ 275 122>+ 120z — 88
i 2382°4+912—26 252°—8z—16

Now investigate why these two cases cannot be merged into a single one.
> rcl:= combined[1][2]:

, regular _chain

]
Equations(rcl, R)
rc2 := combined[2]

)

Equations(rc2, R

[

[2]
[x+y—1,"~y 2]

i [2x+2°—1,2y+2°—1,22+2°—3z+1] (4.2.4)

The two ideals generated by rc; and rc, are obviously relatively prime (no

common roots in z). Thus, the Chinese Remainder Theorem applies. But, if you
try to recombine rc; and rc, into a single system, this will create a polynomial in

y with a zero-divisor as a leading coefficient, as seen below. This is forbidden by
| the properties of a regular chain.

First, create two new regular chains with the polynomials from rc; and rc, that

L are univariate in the variable z.
> S :=PolynomialRing([z]) :
rc3 := Chain([z], Empty(S), (S)) :
| rc4:= Chain([z3 +22-3z+ 1], Empty(S), S) :
Then define two 1 x 1 matrices U,, U,, and combine them with regards to rc; and
rcy.

> U, == Matrix([[y* —y]]);
U, = Matrix([[2y + 22 — 1]]);
combined :=MatrixCombine([rc3, rc4], S, (U}, U,]);
V, rc5:=op(combined,) :
Equations(rc5, S)

U1=[y2—y]

Uy=|2y+2°—1
combined =
[Hy223+y222—3yz3—3y22—3y22+23+y2+9yz+222—y—32)
regular_chain”
(2t + 22— 322+ 2] (4.2.5)

So, the recombination is successful. However, the initial p (with regards to z) of
the resulting polynomial is a zero divisor: it vanishes modulo rc, and is invertible

modulo rc;. Consequently, the computation of the inverse using the command
| Inverse splits the combined regular chain rcs.
> p=Initial(V, , R);
inverse := Inverse(p, rc5, S);
Equations(inverse[l][l][3], S)i
map(Equations, inverse,, S)
p:=z3+22—32+ 1
inverse = [[[1, 1, regular chain]], [regular chain, regular chain]]
[2]
[[z—1] [Z*+22z—1]] (4.2.6)

5. Constructible sets and rational maps

Constructible sets are the geometrical objects naturally attached to triangular
decompositions as polynomial ideals are the algebraic concept underlying the
computation of Grobner bases. This relation becomes even more complex and
essential in the case of polynomial systems with infinitely many solutions.
Basically, constructible sets are what you get when you take algebraic varieties
(defined by polynomial ideals) and add the operation of taking complements. More
precisely, a constructible set is either a set of points defined by both equations
and inequalities, or a finite union of such sets. Note that, in general, the
complement of an algebraic variety cannot be described by a polynomial ideal, but
it is a constructible set. Constructible sets have the nice property that they are
closed under intersections and finite unions, like polynomial ideals, and
additionally under complements.

This section presents the ConstructibleSetTools submodule of the RegularChains
library. To our knowledge, this is the first general-purpose computer algebra
package providing constructible set as a type and exporting a rich collection of
operations for manipulating constructible sets. Besides, this module provides
routines in support of solving parametric polynomial systems, and several of its
commands will be demonstrated in other parts of this document. The examples of
the present section illustrate the Theorem of Chevalley which states that the
image of a constructible set by a rational map is a constructible set.

5.1 Some high-school examples

Constructible sets appear naturally in many elementary questions from high-
school problems. A simple one is the following: for which values of x does
Lf(x, y) = 0 have solutions, with f as below?
> R:=PolynomialRing([y, x]) :
| f=1l-xvy:
The answer is whenever x # 0 holds. Formally speaking, what we want there is
the projection onto the x-axis of the hyperbola f= 0. This object is not the zero
set of a system of polynomial equations, and therefore it cannot be computed
directly via traditional techniques such as a Grobner basis computation. It
requires some finer and more geometrical elimination process. The function
Projection implements such a process via triangular decompositions. The output
is an object of type constructible_set. Its internal representation is given by a list
| of so called regular systems.
> c¢s :=Projection({f}, 1, R);

1 := RepresentingRegularSystems(cs, R);

rs:=1,:

cs := constructible set

_ [:= [regular system] (5.1.1)
Each regular system is a pair consisting of a regular chain plus one or more
inequations:
> rc:= ConstructibleSetTools[RepresentingChain](rs, R);

IsEmptyChain(rc, R);

map(" # , RepresentingInequations(rs, R), 0)

rc = regular chain
true

_ [x # 0] (5.1.2)
In this example, this regular chain rcis just the empty one and the inequation is
just x # 0. This output may look more complicated than the posed problem itself.
So, consider another familiar example but less trivial example: for which values

of a, b, cdoes the equation ax2 + b x + ¢ =0 have solutions? This can be seen as
Lanother "projection” question.
> R :=PolynomialRing([x, a, b, c]);
f :=ax2+bx+c;
cs :=Projection({f}, 3, R);
RepresentingRegularSystems(cs, R);
Display(cs, R);
R := polynomial ring
f= X*a+xb+c
cs := constructible set
[regular system, regular system, regular system]

a=0
a=0
a+0, ,{b=0 (5.1.3)
b+0
c=0

[We obtain three regular systems:
(1) a # 0,

L (2)a=0, b=0,
(3)a=b=c=0.

5.2 Polynomial map images

The following picture illustrates a polynomial map IT: C2— C3. The task is to
describe the image of this map in C3. As one can see from the picture, a point
with coordinates (x, y,z) = (0, b, 0), where b # 0, cannot be in the image of II,
whereas any other point with 2 =0 is. For this reason, the image of IT is a
constructible set and not the zero set of a system of polynomial equations. The
command PolynomialMaplmage below computes the image of II.

v=() 2:0’,1‘#.'0

~ \ 0

CE > o
T (ww—(uw,uw,0) ////# 3

P
w0

r=y=z=0 .
r=z=0yz0

!

> unassign('u','v');
S :=PolynomialRing([u, v]) :
| T :=PolynomialRing([x, y, z]):
After specifying the coordinates of the source space S and target space T, the
| polynomial map is defined and its image is computed.
> II:=[u,uv, 0];

cs = PolynomialMapImage([], IT, S, T);

IT:=[u,uv, 0]
cs := constructible set (5.2.1)

The constructible set cs is given by a list of two regular systems. The first one is
L given by z= 0 # x, and the second one by x=y=2=0.
> 1rs :=RepresentingRegularSystems(cs, T);

map(Display, lrs, T)

Irs .= [regular system, regular system]

z=0

5.2.2
x#0 ()

I
o O O

X
y
z

5.3 Rational map images

Images (and pre-images) of constructible sets under rational maps are also
supported by the ConstructibleSetTools submodule. To demonstrate this facility,
consider the implicit equation of a curve (namely the tacnode curve) given by a
parametric representation involving rational functions. The parametrization of
this curve can be seen as a rational map; its one-dimensional source space S, its
two-dimensional target space T, and the image p of an arbitrary point are defined
below.
> S :=PolynomialRing([t]) :
T :=PolynomialRing([x, y]) :

t?—6t°+9t—2 t —4t+4 ,
i 2t'—16t°+40t7—32t+9 2t'—16t°+40t°—32t+9 |
| Here is a parametric plot of the tacnode curve.
> plot([op(p), t=-10..10]);

p =

-1 -0.5 0 0.5 1

The parametric explicit representation of a curve is very useful for plotting it.
However, in order to answer questions such as "does a given point in target
space lie on the curve?", an implicit representation is more useful.
The image of the full one-dimensional space under the rational map p is
| computed below.
> F:=[]:

cs, = RationalMapImage(F, p, S, T);

1:= RepresentingRegularSystems(csl, T);

Display(cs,, T);

cs, = constructible_set
| .= [regular system, regular system, regular system]

2x4—3yx2+y4—2y3+y2=0
2 3 2 2
10yx"+2y +2x —y —y#0
964 x*y° — 88y% — 480x*)’ + 2104y’ — 6858 x* y* — 2316° — 4328 x*y° — 943y° — 888y
y#0

0

X

y—1

7 7’

0 y=0

[The result has three components. The second and third ones correspond to the
self-intersection points of the tacnode curve, that is, its singularities. The first
component [, defines all the other points. The role of its inequations is to exclude

the two self-intersection points, so that the sets described by the three
_components are disjoint.

> re¢:= ConstructibleSetTools[RepresentingChain](11, T):

eq := Equations(rc, T);

ineq:= Const ructibleSetTools[RepresentingInequations](11, T)

eq:= [2x4— 3yx2+y4—2y3+y2]
ineq == [y, 10yx2+ 2y3+ 2x2—y2—y, 964x2y6— 88y8— 48O><2y5 (5.3.2)
+2104y —6858x*y' —2316)° — 4328 x* > — 943)° — 888y x°

| +892y —72yxX* +318)y° —2x* + 32" +]
The computations below show that the solution set of the equations of the first
component [; correspond to the entire tacnode curve. Note the use of the

command IsContained which decides whether a constructible set is contained in
| another.

> cs, = GeneralConstruct(eq, [], T);
IsContained(csl, cs,, T) and IsContained(csZ, cs,, T)
cs, = constructible_set
true (5.3.3)

Therefore, 2x" — 3yx2 +y2 - 2y3 +y4 = 0 is the implicit representation of the
| tacnode curve.

6. Parametric polynomial systems

The ParametricSystemTools module is devoted to solving systems with
parameters, including real root classification and complex root classification of
such systems, as demonstrated below. The first two examples are dedicated to the
complex solutions of parametric polynomial systems. The last, but very detailed,
third subsection deals with the real case.

6.1 An example from classical invariant theory

Each of the following polynomials defines an elliptic curve in the complex plane.
They depend on parameters a; and a,, respectively. In invariant theory, a

classical question is whether there exists a linear fractional map from the first
curve to the second one.
> f; ==y2—x3—a1x—1;
f, :=y2—x3—a2x—1
fi :=—x3—a1x+y2— 1
i f2:=—x3—a2x+y2—1 (6.1.1)
:These two curves are plotted below for a; =1 and a, = 4.
> with(plots) :

display[implicitplot[f1

y X=-3..3,y=-3..3), implicitplot f,
a;=1

, X=-3..3,y=-3..3, color=blue
a,=4

3-

v

-l

-0.5 0 0.5 1 1.5

)2
~1 (6.1.2)

L -3-
(A generic linear fractional map is applied to the coordinates x and y of the
| second curve.
[> unassign('A','B','C','E"','F', 'H"):
f, :=eva1(f2, [x= Ax+By+C vy = Dx+Ey+F)
Gx+Hy+K Gx+Hy+K
£ (Ax+By+C)° (Ax+By+Ca, . (DX+Ey+F

| ° (Gx+Hy+Kk)?® Gx+Hy+K (Gx+Hy+K)?

Next, one stipulates that the rational function f; — f; must be identically zero.
This yields a system of equations sys. Without loss of generality, one can assume

| that the origin is mapped to the origin, which implies C=F = 0.

> sys :=[coeffs(numer(f1—f3), [X, y]), C, F];
R :=Polynomia1Ring([B, E,H,A D, G K, F,C, a,, az]) :

sys = [-G°, -3G"H, -3G°K, -3GH’, -6GHK, -G a; - 3GK’, -H", G’
—~3H’K, -3G*Ha, - 3HK’,AG*a,—3G°Ka, +A°~D°G-K,
3G’H, -3GH"a, +3G’K,2AGHa,+ BG’a,— 6 GHKa, + 3A°B
~D°H-2DEG,2AGKa,+CG*a,—3GK a,+3A°C—D°K
—2DFG,3GH’, -H a, + 6GHK,AH a,+ 2BGHa,— 3H Kaq,
+3AB°-2DEH-E°G+3GK>,2AHKa,+2BGKa,+2CGHa,
~3HK’a, +6ABC-2DEK—-2DFH-2EFG,AK a,+2CGKa,
~K’a,+3AC*-2DFK-F°G H’,3H°K,BH a,+ B> —E°H
+3HK’, 2BHKa,+CH”a,+3B°C-E°K-2EFH+K’, BK a,
+2CHKa,+3BC*~2EFK—F H,CK a,+C’—F'K,C, F]|

| of two constructible sets.
> cs, = GeneralConstruct(sys, []|, R) :

Cs, := GeneralConstruct([G, H, K], [], R) :
cs; == Difference(cs,, cs,, R):
Display(cs3, R)

B=0 B=0
E-K=0 E+K=0 B=0
H=0 H=0 E-K=0
D=0 D=0 A-K=0
D=0
G=0) G=0))
F=0 F=0 ©=0
F=0
C=0 C=0
C=0
2 2 2 2
a;+a,a;+a;=0 a;+a,a;+a;,=0 a;—a,=0
K+#0 K+#0
K+0
a, # 0 a, 0

(6.1.3)

To the system of equations sys, inequation constraints need to be added. Indeed,
the unknowns G, H, and K cannot vanish simultaneously. Hence, the system to be
solved consists of the zeros of sys, which are not common zeros of these three

polynomials. This new system is easily expressed as the set-theoretical difference

(6.1.4)

B=0 B=0
B=0 E—K=0 E+K=0
E+K=0 H=0 H=0
H=O 2 2
AL KA+K =0 AL KA+K =0
A—K=0
D=0 D=0
D=0
’ G=0 , G=0
G=0
F=0
Cc=0 C=0
CcC=0
a;=0 a;=0
a,=0 a, =0
K=+0 2 2
K=+0 K+0

[The guestion can now be stated in algebraic terms: for which values of the
parameters a; and a, is the constructible set non-empty? Formulas solving for

the unknowns are also desired. The command ComprehensiveTriangularize
addresses these two requirements. The second argument, 2 in the example
below, specifies that the last two indeterminates of the polynomial ring (that is,
a, and a,) are the parameters of the system.

> ct :=ComprehensiveTriangularize(cs3, 2, R)

ct := [regular system, regular system, regular system, regular system, (6.1.5)
regular system, regular system], [[constructible set, [3, 6, 4, 5]],

| [constructible_set, [3, 4]], [constructible set, [1, 2]]]

The second list returned by this command is a finite partition of the projection of

cs onto the parameter space. Each component P of this partition is a

constructible set above which the geometrical properties of cs (degree,

dimension, etc.) are essentially constant; the corresponding component of cs; is

given by the regular systems of ct whose indices are associated with P. Below,
| the three parts of this partition are joined into a single constructible set.
>d := mp2(op, 1, ct[2]):

d := Union(d[1], Union(d[2], d[3], R, R:

D splay(d, R);

a,=0 a,—a,=0 a%+a2a1+a§=0

, (6.1.6)
a,=20 a, # 0 a, # 0
_Next, check if the answer to the question is the one that is well-known from

invariant theory, namely that the two curves can be matched provided that af=

3
=612.

> e :=Genera1Construct([ai—ag], [1, R);
“and” (IsContained(d, e, R), IsContained(e, d, R))

e = constructible set

L true (6.1.7)
Finally, the three regular systems (from the first list returned by

| ComprehensiveTriangularize) are displayed below.

> for i to 3 do Display(ct[1][i], R; end do;
B=0
E—K=0
H=0
a,A—Ka;=0
D=0
G=0
F=0
C=0

2 2
a;+a,a; +a,=0

K+0
a, 0
B=0
E+K=0
H=0
a,A—Ka; =0
D=0
G=0
F=0
C=0

a%—i—azal—i—ag:O
K+0
a, # 0

(6.1.8)

BN tr
[v B v
N o=
I o I o
(@] (@]

(6.1.8)

T @ O
I
© o o

C=0

K+0

6.2 Counting complex solutions

In this short example, it is shown how to determine the number of distinct roots of
a generic polynomial equation of degree 4 depending on the parameters a, b, c,d.
> unassign('a', 'b'", 'c', 'd):

R : PoI ynom al Ring([x, a, b, c, d]):

p : XN4+b* xN2+Cc* x+d;

p—ax +bxX*+cx+d (6.2.1)
The command ComplexRootClassification is precisely adapted to this purpose. It
determines the number of distinct complex solutions of a parametric system
(possibly a parametric constructible set) depending on parameters. The second
argument, 4 in the example below, indicates that the last four variables of the
| polynomial ring, a, b, ¢, d, are the parameters of the equation.
> cr := ConplexRootC assification([p], 4, R);
cr:= [[constructible set, 1], [constructible set, 2], [constructible set, 3], (6.2.2)
[constructible set, 4], [constructible set, «]]

[The result is a partition of the parameter space into five sets: those parameter
values for which p has exactly 1, 2, 3, or 4 complex roots, respectively, and those
parameter values for which p has infinitely many roots (which happens only if
a=b=c=d=0).

Suppose you are interested in the case of three distinct roots. Display the
equations and inequations of the regular systems defining the constructible set,
giving the necessary and sufficient conditions for the polynomial p to have three

| distinct complex roots.
> Info(cr[3][1], R;
[[256d°a® + (-128d°b*+ 144c*db—27c¢*) a+16b*d—4b°c), [d,a, (6.2.3)
(8db—9c¢*)a—2b>c 32db—9¢% (1073741824 b'°4"°
— 66437775360b° ¢* d” + 672682475520 b® ¢* d°
— 2623461654528 c°d’ b’ + 5164940132352 ¢° d° b°

— 5810557648896 ¢'°d° b° + 3961743851520 ¢ d* b*

— 1665238487040 ¢ * d® b° + 421513492032 ¢'® d* b*

— 58887914328 ¢'%d b + 3486784401 ¢*°) a — 268435456 b2 d°

+ 12683575296 b* ! ¢ d® — 98524200960 b*° c* d’

+ 294298583040 b° c® d® — 439871275008 b® B d°

+368924295168b" ¢! d* — 181579926528 b° ¢! d

+52038702720b° ¢ * d” — 8035387920 b* ¢'® d + 516560652 b° ¢'°]],
| [[27¢a+4b’, d], [c, bl [[c d), [b, a]]
This output is to be interpreted as follows. There are three cases:
ec=d=0anda = 0=+b. In this case, the polynomial degenerates to
p= ax'+ bxz, and the three roots are a double root at x=0 and two distinct
simple roots at + —% .
«4b>+27ac*=0=d and b+ 0 # c. In this case, the polynomial degenerates

top= ax4—|— bx* + cx, which has x=0 as a simple root. The expression

3

4b3+ 27 a c2 is the discriminant of the cofactor 5 = ax3+ bx + c, and the

condition that it must be zero implies that this polynomial has at least a
double root. Finally, the condition b # 0 ensures that the latter polynomial
does not have a triple root, that is, it has one double and one single root.

« 256d°a” + (-128d°b* + 144d*b—27¢*) a+ 16 db* — 4 ¢*b> = 0 and none of
the polynomials in the last list are zero, includinga # 0,c# 0, d # 0,
32bd—9c* 0, and 2b% - (8bd— 902)a #+ 0. The first polynomial is a factor

| of the discriminant of p:

> discrimp, X);

| a(256d°a®—128ab°d*+144abc’d—27ac +16b°d—4b°c*) (6.2.4)
The condition that it must be zero implies that p has at least a double root, and

| the remaining inequations ensure that all the other roots are simple.

6.3 Real root classification and border polynomial

Real root classification

A semi-algebraic system (SAS) is a polynomial system containing polynomial
equations p= 0, inequations p # 0, and inequalities p> 0 or p > 0. If a semi-
algebraic system contains parameters, it is called a parametric SAS. For a
parametric SAS and a prescribed non-negative integer n, the real root
classification problem is to compute conditions on the parameters such that the
system has exactly n distinct real solutions. In the RegularChains package, a
semi-algebraic system is given by four lists F, N, P, H of polynomials,
representing the equations, non-negativity conditions (weak inequalities),
positivity conditions (strict inequalities), and equations, respectively. The
RealRootClassification command takes these four lists as the first four
arguments. As in the examples above, the fifth argument, d, is an integer
specifying that the last d indeterminates of the underlying polynomial ring are

the parameters of the system. The sixth argument, n, specifies the desired
number of distinct real solutions, and the last argument is the polynomial ring R.
| For example,

> R := Polynomal Rng([x, a, b, c]):
F := [x*2*a+x*b+c]:
N:=[]:P:=[x]:H:=[4a]:
rr .= Real RootClassification(F, N, P, H 3, 2, R;

_ rr:= [[regular semi _algebraic set], border polynomial] (6.3.1.1)
Here, a, b, c are viewed as parameters and the task is to find conditions for the

L general polynomial of degree 2 to have exactly 2 distinct positive real solutions.
The output is a list, rr; of regular semi-algebraic sets and a border polynomial

object (BP), rr,; together these describe a first-order logic formula. More
precisely, the list rr; gives necessary and sufficient conditions for the input

system to have the prescribed number of real solutions, provided that the
condition encoded by the BP holds. The role of the border polynomial is to
exclude degenerate cases, which can be handled later with further computations
(more on this later).

The command below shows the contents of the BP, which is actually a list of
polynomials. The logical condition encoded by the BP is that none of those
polynomials should be zero.

B Info(rr[2], R);
L [a,b,c,—4ac+b2] (6.3.1.2)
The following commands extract information about the list of regular SAS and
| display the logical condition that these encode, using the command Display.
>ss :=rr[1][1];

Di spl ay(ss, R);

ss = regular semi_algebraic_set
c<Oanda < O0andb > 0and4ac—b*< 0

, (6.3.1.3)
orc>0anda > 0andb < Oand4ac—b <0

[The output of the last command is to be interpreted as the logical disjunction
("or") of the conditions in the last two rows; each row represents the logical
| conjunction ("and") of the individual inequalities.

As a first approximation, a regular SAS is a subset of the real solutions of a
regular chain. More precisely, it is encoded by three pieces of data:

* aquantifier free formula qf,

* a regular chain rc, and

* a list of lists of indices I.

This encoding is called aparametric box. The formula gf specifies the conditions
on the variables which are free in rc (non-algebraic), whereas rc and [specify
the conditions on the variables which are algebraic in rc.

In the example above, rc and [are empty (which is often the case); therefore, the
| conditions encoded by the parametric box are just the ones of gf.

> rc = RepresentingChain(ss, R);

Equati ons(rc,
: = RepresentingBox(ss);
Repr esent i ngRoot | ndex(box) ;

box

R);

rc = regular chain
[]

box := parametric_box

1:=11 (6.3.1.4)

Summarizing, the answer to the particular question is: provided that the BP
holds, the input SAS has exactly 2 distinct positive real solutions if and only if gf
holds. Note that, in the example, the conditions of gf imply those of the BP; thus
the answer can be simplified further as follows:

| the input SAS has exactly 2 distinct positive real solutions if and only if gf holds.

Setting infolevel to a nonzero value also provides information on how to interpret
| the above result.

> i nfol evel [Regul ar Chai ns]
Real Root Cl assi fication(F,

i nf ol evel [Regul ar Chai ns]
TRDt of i nd1:
TRDt of i nd1:

I F

TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:

TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:
TRDt of i nd1:

= 1:
N, P, H 3, 2, R;
= 0:

FI NAL RESULT:

The system has given nunber of real solution(s) IF AND ONLY

[RI1] <0 RZ2 <00 <=R3] R4] <0]
R

[0 < R1] 0 <R2] R3] <=0 R4] <0

wher e

R1] =c¢

R2] =a

RI3 =0b

R 4] = 4*a*c-b"2
PROVI DED THAT

c <>0

a<>0

4*a*c-b"2 <> 0
0. 4e- 2*seconds

[[regular semi algebraic set], border polynomial] (6.3.1.5)

There are two alternative ways to obtain the answer in a simpler (with less
commands) but more coarse manner. The first one, shown above, is to set the
infolevel to 1. The second one, shown below, is to use the Info command on the
regular SAS. With this second approach, one can directly see the encoding of the
regular SAS, that is, the parametric box; however, the conditions defining the

| regular SAS are not shown explicitly.

[> I nfo(ss, R);

[[lc,a,b,4ac—b"], [[-1, —1,1, =11, (1,1, =1, =111, [1 [1]

(6.3.1.6)

More about border polynomials

The border polynomial is actually a list of polynomials such that the union of the
hypersurfaces given by these polynomials contains all the "abnormal” (non-
generic) parameter values of the parametric input SAS. For the previous

example, the border polynomial is [¢c,a,4ac— bz] . It is intuitive that the zeroes
of these polynomials represent degenerate cases: the first two indicate vanishing
of the trailing and leading coefficients, respectively, and the last polynomial is

the discriminant of the input polynomial. You can use the Info command to view
L the contents of the BP:

> Info(rr[2], R;

_ [a,b,c,—4ac+b2] (6.3.2.1)
You might want to go further in analyzing the number of real solutions of the
input SAS; that is, you might want to figure out what the answer is in these
degenerate cases. This is very simple: it suffices to add the product of the
polynomials in the BP to the list of equations when calling
RealRootClassification (or to add the polynomials in the BP one by one to the
equations of the system and call RealRootClassification accordingly).

In the example above, the question was for which parameter values does the
input system has 2 distinct positive real solutions. When adding the polynomial

4ac—b*tothe input system, below, you see that the list of regular SAS in the
output from RealRootClassification is empty. This just means that it is impossible

that the equation ax*+bx+c=0has 2 distinct positive real solutions when its
| discriminant is zero.
>rr := Real RootC assification([4*a*c-b”"2, op(F)], N, P, H 3, 2,

R);

bp :=rr[2];Info(bp, R;

rr=[[], border polynomial]
bp := border polynomial

L [b, a] (6.3.2.2)
The above output means: provided that b # 0 # ¢ holds, the new system never
| admits two distinct positive real solutions.

More about regular semi-algebraic sets

A regular semi-algebraic set is essentially a subset of the real solutions of a
regular chain. When this subset is finite, it can be encoded as a list of points with
real coordinates. Each of these real coordinates must be an algebraic number
defined by a regular chain and an isolating interval. Such an encoding is called a
numerical box.

When this subset is not finite, the idea is to use a regular chain rc that is not
zero-dimensional. Such a regular chain will have variables which are free in rc,
that is, variables that do not belong to the main variables of the polynomials
defining rc. Those free variables can be regarded as parameters. For rc to have
real solutions, those free variables may need to satisfy some inequalities; this is
where the quantifier-free formula gf comes in. More technically, gf defines an
open semi-algebraic set (SAS) at every point of which rc specializes well and
separates well (again, viewing the free variables of rc as parameters). This
technical condition has the following important consequence: the number of real
roots of rc is constant on the open SAS; moreover, each root of rc (complex or
real) is a simple root on the open SAS. This in turn has the following
consequence: the real solutions of rc can be indexed uniformly on the open SAS.
Now this is where the list of lists of indices [comes in; it selects some of the real
roots of rc.

To illustrate the concept of a regular semi-algebraic set in a sufficiently general
situation, the original question will be modified as follows: Determine under

which conditions on a, b, ¢, d the equation x> +d =0 has 2 distinct real solutions

subject to d satisfying a d*+bd+c=0. Note that d plays a special role among
| the parameters, so it is ordered before a, b, c.

[x*+d, ad°+bd+c]:
[]:
[]:

[]:
PolynomialRing([x, d, a, b, c]) :

r := RealRootClassification(F, N, P, H, 4, 2, R)

rr:= [[regular semi _algebraic set], border polynomial] (6.3.3.1)
[Recall that the output consists of a list of regular SAS and a BP object. The
command RepresentingBox applied to a regular SAS returns its encoding as
either a numerical box or a parametric box; the command IsParametricBox will
determine which of these two cases holds.
> {seq(IsParametricBox(RepresentingBox(ss, R)), ss= rrl)}

{true} (6.3.3.2)
Dlsplay the BP using the Info command.
> Info(rr,, R)

> F:
N:
P
H:
R:
r

[d] (6.3.3.3)
Select the first parametric box for further inspection. The command Info shows
the raw data defining the parametric box, whereas the command Display pretty
prints the conditions encoded by this data.
> §S = rrll:

box := RepresentingBox(ss, R);

Info(box, R);
Display(box, R);

box := parametric_box

2

[[1d], (=111}, [ad*+ bd +c], [[1]]]
c=-ad’—bd
d<o0

The three pieces of data defining a parametric box can also be accessed
independently as shown below. Note that RepresentingChain applies directly to a
regular SAS since both numerical boxes and parametric boxes have a

representing regular chain. The components gf and I, however, are specific to
parametric boxes.

(6.3.3.4)

(Note that objects of types regular_chain, regular_system, constructible_set,
guantifier_free_formula, parametric_box, regular_semi_algebraic_set, and
| border_polynomial can all be printed by the Info and Display command.)
> box := RepresentingBox(ss, R);
rc := RepresentingChain(ss, R);

qf := RepresentingQuantifierFreeFormula(box);
1 := RepresentingRootIndex(box);
Display(rc, R);
Display(qf, R);
Display(box, R)
box := parametric_box
rc = regular chain
qf = quantifier free formula
[:==1[[1]]
ad*+bd+c=0
d<o0

c=-ad —bd

i d<o0

An advanced example of real root classification
| Define a polynomial ring.

> unassign('p','q’');

| R:=PolynomialRing([x, y, z, q, p]) :

 Consider the following equations...

(6.3.3.5)

> glz=y2+zz—2yzp—1:
gzz=zz+x2—22xq—1:
g3==x2+y2—2xyq—1:
g,:=>5 q2—1:

F := [91- 95, 93, 94]:

..and constraints.
> N:=[]:

H:=[]:

The last 2 unknowns, p and ¢, are viewed as parameters. Suppose you want to

| know the conditions for the system to have no real solutions.

> rr := RealRootClassification(F, N, P, H, 2, 0, R)

rr:= [[regular semi _algebraic set, regular semi _algebraic_ set], (6.3.4.1)
| border _polynomial]

> Display(rrl, R);

Display(rrz, R)

q= RootOf(S_Z2 — 1, index = real,)
p>0and2p—1>0and5p—3+#0and5p+ 3 > Oand5p2— 1>0
q=RootOf(5 Zz*—1, index = real,)

7

p>0and2p—1>0and5p—3>0and5p+ 3 > 0and5p2—1 >0

i [p,2p—1,5p—3,5p+3,2p+1,5p —1] (6.3.4.2)
The output should be read as follows: provided that not one of the polynomials in
the BP (displayed in the last row) vanishes, the input system has no real solutions
if and only if one of the following two conditions holds:
()p>0A5p+3>0A2p—1> O/\5p2—1 > 0 A q is the first (from left to
right) root of 5 q2— 1;

(2)p>0 A5p—3>0A5p+3>0A2p—1>0A5p°—1>0Aqis the

| second root of 5 q2 - 1.

Why do border polynomials form a type?
Consider again the parametric system in one variable and three parameters,
associated with a generic univariate polynomial equation of degree 2.
> R --PolynomialRing([x, a,b,c]:
[ax®*+bx+c]:
[]:
[]:
. H:=[]:
The border polynomial is intrinsically associated with this system, independent of
the prescribed number of real solutions of interest. The BP can be computed
| directly by the BorderPolynomial command.
> bp :=BorderPolynomial(F, N, P, H, 3, R) :
Info(bp, R)

F
N:
P:

la, -4 ac+ D] (6.3.5.1)
The reason why border polynomials form a type in the RegularChains package
(and cannot just be viewed as lists of polynomials) is that under special
circumstances, the border polynomial of a parametric semi-algebraic system may
degenerate.

The first such case is when the parameters do not appear in the system of
polynomials; then the border polynomial is [1], as in the next example.

> bp == BorderPolynomial([x*—1], [1, [1, [1, 3, R) :

eval(bp);

Info(bp, R)
table([PolynomialList = [1], type = border polynomial, PolynomialRing

= polynomial ring])
[1] (6.3.5.2)

Another special circumstance is that of overdetermined or inconsistent systems;
L then the border polynomial is denoted as [], as in the example below.

> F :=[ax2+bx+C. a, b]:
bp := BorderPolynomial(F, [], [], [], 1, R) :
eval(bp);
Info(bp, R)

table([PolynomialList = [], type = border_polynomial, PolynomialRing
= polynomial ring])
| [] (6.3.5.3)

Finally, the last special case is when the input system has "generically"” infinitely
many complex solutions;

then the border polynomial is denoted as [0], as in the example below (this is

| because only two of the variables, b and ¢, are considered as parameters).

> F:=[ax*+bx+c]:
bp := BorderPolynomial(F, [], [], [], 2, R) :
eval(bp);
Info(bp, R)
table([PolynomialList = [0], type = border polynomial, PolynomialRing
= polynomial ring])

[0] (6.3.5.4)

6.4 Solving parametric semi-algebraic systems with
application to the study stability of biological systems

The biological system is described by the following system of differential
equations.
Its right hand side encodes the equilibria:

> ode : = {diff(x(t),t) = -x(t)+s/(1+y(t)"2), diff(y(t),t)=-y(t)+s/
(1+x(t)"2) };
F .= [-x+s/(1+y"2), -y+s/(1+x"2)];

d S d S
ode = |— x(t) = -x(t) + ————, —- y(t) = -y(t) + —————
{ dt 1+ y)? dt 14 x(t)
Fi=|-x+ —5>—, -y+ 25 (6.4.1)
i vy +1 x +1

The following two Hurwitz determinants determine the stability of hyperbolic
equilibria:

(> DL ;= -(di ff(F[1],x)+diff(F[2],y)); #D1 is 2
D2 :=diff(F[1],x)*diff(F[2],y)-diff(F[1],y)*diff(F[2],X);
D1 :=2
4szyx

D2 =1-

(6.4.2)

+1)° (¢ +1)°

The semi-algebraic system below encodes the asymtotically stable hyperbolic
equilibria:

> P = [nunmer(normal (F[1])) =0, nuner(normal (F[2]))=0, x>0, y>0,
s>0, nuner (D2)>0];

L = [-Xy2+S—X=O, —><2y—|-s—y=0,0<x,0<y,0<s,0<><4y4 (6.4.3)
+2xX Y+ 2xXy 4t yx+ X Ay y 22X + 2y + 1]

Compute a real comprehensive triangular decomposition of P w.r.t. the
parameter s:

> R := Polynom al Ring([y, X, s]):
ctd : = Real ConprehensiveTriangul arize(P, 1, R);
ctd = [[[1, squarefree semi_algebraic_system], [2, (6.4.4)
squarefree semi algebraic system]], [[semi _algebraic set, [1],
[semi_algebraic set, [1]], [semi_algebraic set, [2]]]]

Derive the values of s s.t. P has 2 positive real solutions, that is the biological
system is bistable:

> ctd2 : = Real ConprehensiveTriangul ari ze(ctd, R, 2);
Display(ctd2[2][1][1],R);
ctd2 := [[[1, squarefree semi algebraic system]], [[semi _algebraic set,

[1]11]
[2 < s] (6.4.5)

The two asymptotically stable equilibria are represented by a
squarefree semi algebraic system.

> ss = ctd2[1][1][2];
Di splay(ss, R);
Ss = squarefree _semi_algebraic_system

xy—1=0
xz—sx+1=0
y>0 (6.4.6)

x>0

s7x—56—6x55+554+8xs3—452> 0

7. FFT-based polynomial arithmetic

The module EastArithmeticTools supports the implementation of modular
methods for computing with polynomials, algebraic extensions, and thus regular
chains. This support consists of fundamental operations such as resultant,

polynomial gcds, normal forms, etc.

The commands of this module work in prime characteristic and rely on
asymptotically fast algorithms. Most of the underlying polynomial arithmetic is
performed by C code and relies on (multi-dimensional) Fast Fourier Transform
(FFT) and straight line programs (SLPs). This C code is highly optimized and
implements the Truncated Fourier Transform (TFT) and an improved version of
Montgomery's trick.

* The commands lteratedResultantDim0O and lteratedResultantDim1 compute
the iterated resultant of a polynomial with regards to a regular chain of
dimension 0 and 1, respectively.

* The commands NormalFormDimO and ReduceCoefficientsDim0O compute the
normal form of a polynomial with regards to a zero-dimensional regular chain.

* The commands NormalizePolynomialDim0O and NormalizeRegularChainDimO0
normalize a polynomial (with regards to a zero-dimensional regular chain) and
a regular chain (with regards to itself).

* The command RegularizeDimO tests whether a polynomial is invertible modulo
a zero-dimensional regular chain.

* The commands RegularGcdBySpecializationCube,
ResultantBySpecializationCube, and SubresultantChainSpecializationCube
compute resultants and polynomial gcds modulo a regular chain using fast
evaluation and interpolation.

* The commands RandomRegularChainDim0 and RandomRegularChainDim1
compute random regular chains of given degrees.

* Finally, the command BivariateModularTriangularize solves bivariate
polynomial systems.

Most of the commands of EastArithmeticTools implements core operations on
regular chains such as regularity test and polynomial gcd modulo a regular chain.
However, these commands have several constraints. On top of the characteristic
constraint (detailed below), the current regular chain must have dimension zero
or one. There is only one exception: the command
RegularGcecdBySpecializationCube requires no assumption about the dimension.
Note also that some commands do not take any regular chains as input (for
instance, SubresultantChainSpecializationCube and
ResultantBySpecializationCube).

Since FastArithmeticTools relies heavily on direct FFT and Montgomery's trick,
the characteristic of the polynomial ring must be a prime number p satisfying the
following properties. First, it should not be greater than 962592769. Secondly,
the number p— 1 should be divisible by a sufficiently large power of 2. The power

22% is often sufficient. If this power of 2 is not large enough, then an appropriate
error message is returned. Using try-catch statements is highly recommended
when programming with the commands of this submodule.

7.1 The impact of fast arithmetic
The purpose of the session below is to demonstrate how resultants can be

computed with the module FastArithmeticTools.

> restart;
wi t h(Regul ar Chai ns) ;
wi t h(Fast ArithneticTool s);

[AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, Display,
DisplayPolynomialRing, Equations, ExtendedRegularGcd,
FastArithmeticTools, Inequations, Info, Initial, Intersect, Inverse,
IsRegular, LazyRealTriangularize, MainDegree, MainVariable,
MatrixCombine, MatrixTools, NormalForm, ParametricSystemTools,
PolynomialRing, Rank, RealTriangularize, RegularGced,
Regularizelnitial, SamplePoints, SemiAlgebraicSetTools, Separant,
SparsePseudoRemainder, SuggestVariableOrder,

TRDFM elim_eqsfirst, TRDconvex _union, Tail, Triangularize]

[BivariateModularTriangularize, IteratedResultantDimO, (7.1.1)
IteratedResultantDim1, NormalFormDimO,
NormalizePolynomialDim0O, NormalizeRegularChainDimO,
RandomRegularChainDim0, RandomRegularChainDim1,
ReduceCoefficientsDim0, RegularGedBySpecializationCube,
RegularizeDim0, ResultantBySpecializationCube,
SubresultantChainSpecializationCube]

Set the polynomial ring.
> p = 962592769;
vars := [a, b];
R := Pol ynom al Ri ng(vars, p);
p = 962592769
vars = [a, b]
| R := polynomial ring (7.1.2)

Define the input polynomials.

> degbound :=40;
f, == randpoly(vars, dense, degree=degbound) mod p :

f, == randpoly(vars, dense, degree=degbound) mod p :
degbound := 40 (7.1.3)

Evaluate/interpolate by subproduct tree techniques.

> t; :=time() :
SCube := SubresultantChainSpecializationCube(f[1], f[2], a, R, 0);
r, :=ResultantBySpecializationCube(f[1], f[2], a, SCube, R) :
t, == time() — t;
SCube = subresultant chain specialization cube
t; == 0.476 (7.1.4)

Evaluate/interpolate by multi-dimensional TFT.

[> t, == time() :
SCube :=SubresultantChainSpecializationCube(f,, f,, a, R, 1); r, =
ResultantBySpecializationCube(f,, f,, a, SCube, R):
t, == time() — t,
SCube = subresultant chain specialization cube
t, = 0.218 (7.1.5)

Evaluate/interpolate without fast arithmetic.

> t;=time() :
ry = Resultant(fl, 5, a) mod p :

t, = 10.519 (7.1.8)

Compare the results.

[> evalb("and” (ry=r,, r=r3));
degree(r,);
EURCTREY
true

1600
0.476,0.218, 10.519 (7.1.7)

7.2 The impact of modular methods together with fast
arithmetic

The session below shows how polynomial gcds modulo regular chains can be
computed with the module EastArithmeticTools. This applies also to polynomial
gcds over towers of field extensions.

> restart:
wi t h(Regul ar Chai ns) :
wi th(Fast ArithnmeticTool s):
wi t h(Chai nTool s):

Set the polynomial ring.

vars := [a, b, c]:

[> p .= 962592769:
R := Pol ynom al Ri ng(vars, p):

Define the polynomials.

> degbound :=7;
f, == randpoly(vars, dense, degree =degbound) mod p :

f, == randpoly(vars, dense, degree =degbound) mod p :
degbound =7 (7.2.1)

Evaluate/interpolate by multi-dimensional TFT.

> t, :=time() :
SCube := SubresultantChainSpecializationCube(f[1], f[2], a, R, 1) :
r, :=ResultantBySpecializationCube(f[1], f[2], a, SCube, R) :
rc :=Chain([r2], Empty(R), R) :
g, :=RegularGcdBySpecializationCube(f[1], f[2], rc, SCube, R) :
t,:=time() — t,
t, = 0.387 (7.2.2)

Compute without fast arithmetic and without modular methods (evaluation /
interpolation). Since the command RegularGced tries to use modular methods
whenever possible, change the characteristic of the ring to a small prime, so as to
enforce the use of non-modular and non-FFT-based algorithms.

> ty = time() :

S := PolynomialRing(vars, 257) :
r;:= Resultant(fl, f,, a) mod p :

rc := Chain([rs], Empty(S), S) :
g; == RegularGed(f,, f,, a, rc, S):
t:=time() —t;

t:=10.937 (7.2.3)

7.3 Accelerating the core operations of the
RegularChains library

Testing whether a polynomial is invertible modulo (the saturated ideal of) a zero-
dimensional regular chain is a fundamental operation. Its implementation
RegularizeDimO in the FastArithmeticTools takes advantage of FFT-based
polynomial arithmetic and improves on the command Regularize. Note that this
latter command implements a more general algorithm (with no assumptions on
characteristic or dimension).

> restart:
wi t h(Regul ar Chai ns):
wi th(FastArithmeticTool s):
wi t h(Chai nTool s):

Set the polynomial ring.

vars .= [x1, x2, x3, x4]:

[> p 1= 962592769:
R := Pol ynom al R ng(vars, p):

Define a random (dense) regular chain and a polynomial.

> N : = nops(vars):

d .= 5;

degrees :=[3, 4, 5, 8];

rc : = RandonRegul ar Chai nDi nO(vars, degrees, p):

p := nmod (nod (randpoly(vars, dense, degree = d)+rand(), p), p)

| d=5
L degrees := [3, 4, 5, 8] (7.3.1)
Compute with the modular code.
> t, :=time() :

RegularizeDim@(p, rc, R) :

t, :=time() — t;

t, == 0.167 (7.3.2)

Compute with the generic algorithm (without modular methods and without
asymptotically fast arithmetic). Here again, change the characteristic to prevent
use of the fast code.
> t, == time() :
Regularize(p, rc, PolynomialRing(vars, 17));
[[rel, [1]
ty == 0.422 (7.3.3)

7.4 Solving large bivariate systems

In this example, solve a dense bivariate and square system which has 2500
solutions.

> restart:
wi t h(Regul ar Chai ns) :
wi th(Fast ArithnmeticTool s):
wi t h(Chai nTool s):

Set the polynomial ring.

vars = [x, y]:

{f p := 469762049:
R := Pol ynom al R ng(vars, p):

Define the polynomials and inspect their number of terms.

[> degbound :=50 :
f, == randpoly(vars, dense, degree =degbound) mod p :

f, == randpoly(vars, dense, degree =degbound) mod p :
nops(f;); nops(f,)
1314
1321 (7.4.1)

Solve the system given by f; = f, = 0 using fast arithmetic.

> t:=time() :
1:= BivariateModularTriangularize([fl, fz], R) :
t:=time()—t

t:=0.691 (7.4.2)

Check the number of solutions and its number of terms.

> map(Nunmber Of Sol utions, |, R);
map(nops, Equations(l[1l], R));
[2500]
_ (2404, 2501] (7.4.3)
>

8. Cylindrical Algebraic Decomposition and
Quantifier Elimination

The RegularChains library provides a set of commands for computing cylindrical
algebraic decomposition (CAD, see command

CylindricalAlgebraicDecompose) and doing quantifier elimination (QE, see
command QuantifierElimination). The underlying algorithm first computes a
cylindrical decomposition of the complex space (CCD, see command
CylindricalDecompose), which is futher refined into a cylindrical algebraic
decomposition of the real space. Such an algorithm is different from the
traditional projection-lifting algorithm introduced by George Collins and further
refined by others.

8.1 Cylindrical decomposition of the complex space

A CCD is a partition of the complex space into disjoint cells such that they are
cylindrically arranged,

meaning the projection of any two cells onto any lower dimensional space are
either idential or disjoint,

and each cell is the zero set of a regular system.

Pol ynom al Ring([y, Xx]);

[x"A2+yn2-1];

> R :
F :

R := polynomial ring

i Fi=[xX+y —1] (8.1.1)
> ced : = Cylindri cal Deconpose(F, R);
Di spl ay(ccd, R);
ccd:=ccd
=0 x—1=0 =0 x+1=0
Y Y , (8.1.2)
x—1=0 y# 0 x+1=0 y+ 0
V+x—1=0 V+xX—1+0
I Y —1#0 I -1#0
(> ced @ = Cylindrical Deconpose(F, R, output=system;
D splay(ccd, R);
ccd = [regular system, regular system, regular system, regular system,
regular system, regular system]
=0 x—1=0 =0 x+1=0
Y Y) (8.1.3)
x—1=0 y# 0 x+1=0 y+ 0
y2+x2—1=0 y2+x2—1¢0
i X —1#0 ' X —1+0

A CCD is best described by a complex cylindrical tree (CCT).
Informally, a CCTT of Q[x 1,x 2,...,x n]is arooted tree with each non-root node

described by a polynomial constraint p(x_1,...,x_i)=0, p(x_1,...,x_i) # 0, or "any
xX_ 1",
Moreover, the polynomial constraints in any path of T form a regular system such

that
the union of their zero sets form a CCD.

The CCT can be displayed by the piecewise option.

> R := Polynomal Ring([y, X]);

F = [x"2+y"2-1];

Cyl i ndri cal Deconpose(F, R, output=piecew se);
R := polynomial ring

F = [y2+x2— 1]
1 =0
Y x—1=0
1 otherwise
! y=0 +1=0
X = 8.1.4
1 otherwise ()
2 2
1 +x"—1=0
y X otherwise
1 otherwise

If a set of polynomials, say F, is passed to CylindricalDecompose, then an F-
invariant CCD

is computed. By F-invariant, we mean for any polynomial f of F and any cell C in
the CCD,

either C is contained in the zero set of f or C has no intersection with the zero set
of f.

One can use the command IsContained and Intersection to verify if the output
satisfies the

invariance property.

> R := Polynom al Ring([y, X]);

f.= x"2+y"2-1; g := x*y-1;
F:=1[f,0];
Irs := Cylindrical Deconpose(F, R, output=systen);

R := polynomial ring
f= y2 +x—1
g=xy—1
F = [y2+x2— 1, xy— 1]

Irs .= [regular system, regular system, regular system, regular system, (8.1.5)
regular system, regular system, regular system, regular system,
regular system, regular system, regular system, regular system,
regular system, regular system, regular system|]

For example, the first complex cell, namely the zero set of the first regular
system, is contained
in the zero set of f.

>rsl :=1Irs[1];
Di splay(rsl, R);
csf := Triangularize([f], [1], R output=lazard);
csl := ConstructibleSet([rsl], R);
| sCont ai ned(csl, csf, R);
rs1 := regular system

y—1=0
x=0

csf = constructible set
csl := constructible set
true (8.1.6)

This cell has no intersection with the zero set of g.

>rsl ;= 1rs[1];
Di splay(rsl, R);
csg := Triangularize([g], [1], R output=lazard);
csl := ConstructibleSet([rsl], R);
cs := Intersection(csl, csg, R;
| sEmpty(cs, R);

rs1 := regular system
y—1=0
x=0
csg = constructible set
csl := constructible_set

cs := constructible set
true (8.1.7)

Besides a list of polynomials, a list of constraints (equations or inequations) are
also allowed

to be the input of CylindricalDecompose. In this case, instead of a sign-invariant
CCD, a (smaller) truth-invariant CCD will be computed.

> R := Polynomal Ring([y, X]);
F :=[f=0,90=0];
cad := Cylindrical Deconpose(F, R, output=piecew se);

R := polynomial ring
F = [y2+x2— 1=0,yx—1=0]
1 x—1=0
Y X=X +1=0
cad = 1 otherwise (8.1.8)

1 otherwise

Several other output formats are supported, which are useful in some context.

If the input is a list of constraints, the options "output=cct” and "output=tree"
generate a partial CCT

expressing exactly their complex zeros while the options "output=ccd”, "output=
fulltree" and "output=piecewise” will generate a complete CCT.

The options "output=tree” and "output=fulltree"” represent the CCT in a nested
list style;

> R := Polynom al Ring([y, X]);
F .= [f=0, g=0];
cad := Cylindrical Deconpose(F, R, output=cct);
Di splay(cad, R);
cad := Cylindrical Deconpose(F, R, output='ccd');
D splay(cad, R);
cad := Cylindrical Deconpose(F, R, output='piecew se');
cad := Cylindrical Deconpose(F, R, output="tree');
cad := Cylindrical Deconpose(F, R output="fulltree');
R := polynomial ring
F = [y2+x2—1=0,yx—1=0]
cad=c c t

xy—1=0
x4—x2+1=0
x#=0
cad:=c c d
xy—1=0 P
—-xXx"+1=0
Fotr1=0 7% X =X+ 1#0
xy—1+0
x=0
1 x—1=0
Y x4—x2+1=0
cad = 1 otherwise
1 otherwise
cad = [1, [x* = x¥*+1=0, [yx—1=01]]
i cad = [1, [x* =X+ 1, [yx— 1], [1]], [1, [1]]] (8.1.9)

8.2 Cylindrical algebraic decomposition of the real

space

The command CylindricalAlgebraicDecompose is used to compute a cylindrical
algebraic decomposition of the real space. It supports different inputs, like list of
polynomails, list of polynomial constraints, or list of list of polynomial constraints.
It also provides different output formats, such as'output'='piecewise’,
‘'output'="tree’, output="list', output="cadcell’', output="'rootof', output=
‘cad'. The default output option isoutput="cad"

If the input F is a list of polynomials, an F-invariant CAD, which means that any
polynomial of F is sign-invariant on any cell of the output CAD, is computed.

> restart; wth(Regul arChains): wth(Sem Al gebraicSet Tool s):
R := Polynomal Rng([y, X]);
F.=[y"2-x, x-1];
cad := Cylindrical Al gebrai cDeconpose(F, R);
R := polynomial ring
F = [yz—x,x— 1]
cad:=c a d (8.2.1)

By default, the output is a'c_a_d'type. One can use Display or Info to show its
cells.

(> Di spl ay(cad, R);

y=y y y ’ y , y< -Jx . (8.2.2)
x <0 x=0 x=0 x=0 0<xAx<l1
y=-Vx Vx <yny<ix y=yx
O<xAx<l1 O<xAx<xl1l O0<xAx<l1
Ix <y y<-1 y=-1
0<xAx<1 ' x=1 | x=1 ’
—1l<yny<l1 y=1 1<y y< -Jx
x=1 "I x=1 | x=1 ' 1 <x '
y=-/x -Ix <yny<x y=1/x Ix <y
i 1 <x 1 <x 1 <x 1 <x

B Info(cad, R);
[[x<0,y=y], [x=0,y<0],[x=0,y=0],[x=0,0<y], [0<xAx<1ly (8.2.3)

< —\/7] [O<x/\x< 1,y=—\/?], [O<x/\x<1, —\/7<y/\y<\/?],
[O<x/\x< 1,y=\/?], [O<x/\x< 1,ﬁ<y], x=1,y< —1], [x=1,

y=—-1], [x=1, -1 <yAny<l1] [x=1y=1] [x=1,1<y] [1 <Xy
< _\/Y], [1 <Xl.y= _\/;]l [1 <X, ‘\/7<y/\y<\/7]l []- <X:y=\/7],
[1<xVx <yl

The tree data structure of the CAD is best shown by the option 'output'=
'piecewise’.

> R := Polynom al Ring([y, Xx]);
Fo=[y"2-x];
cad := Cylindrical Al gebrai cDeconpose(F, R, output=piecew se);
R := polynomial ring

Fi= [y —x]

1 x<0
1 y<O0

1 y=0 x=0
1 O<y

cad = | | 1 y<-Jx (8.2.4)

1 y=-Jx

1 Ix <yAy<Jx 0 <x
1 y=Vx
1 \/7<y

The input can be a list of polynomial constraints, which incodes a conjunction
formula or a semi-algebraic system. The Display command shows all the cells of
the output CAD.

> R := Polynom al Ring([y, X]);
F:=[y*2-x=0, x-1=0];
cad := Cylindrical Al gebrai cDeconpose(F, R);
Di spl ay(cad, R);

R := polynomial ring
F = [yz—x=0,x—1=0]
cad :==c a d

(8.2.5)

= < -1 = -1 —1l<yArny<l

y=y y , y , YAY , (8.2.5)
x <1 x=1 x=1 x=1

y=1 1<y y=y

x=1 I x=1 11 <x

To see all the true cells, that is the cells satisfying the input constraints,
'output'='cadcell' can be used.

> R := Polynomal Ring([y, X]);
cad := Cylindrical Al gebrai cDeconpose([x"2+y”"2-1=0, x*y-1/2=0], R
out put =cadcel |);
Di spl ay(cad, R);
R := polynomial ring
cad = [cad cell, cad cell]

- L _ 1
y= y

ax
T T (8.2.6)
x=-Ty x="

As can be seen, the option'output'="'cadcell' does not attempt to make complete
back substitution.

The option'output'='rootof' instead supports complete back substitution and
tries to merge adjacent cells

to produce compact formula.

[> R := Polynomi al Ring([y, x]):
cad : = Cylindrical Al gebrai cDeconpose([x"2+y"2-1=0, x*y-1/2=0], R
out put =r oot of) ;

7’

_J2 __ZH
X = 5 , V= > (8.2.7)

[> R := Pol ynom al Ring([y, Xx]):
cad := Cylindrical Al gebrai cDeconpose([x"2+y”"2-1<=0], R, output=
r oot of) ;

| cad==H—1§x/\x£ 1, - X+ 1 <YyAy<y —x2+1“ (8.2.8)

The input can also be a list of list of polynomial constraints, which represents a
formula in disjunctive normal form or a union of semi-algebraic systems.

> R :
F.

Pol ynom al Ring([y, X]);
= [[y*2-x=0], [x-1=0]];
cad := Cylindrical Al gebrai cDeconpose(F, R, output=cadcell);

Di splay(cad, R);

cad = [cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell,

R := polynomial ring
Fi=[[y*—x=0] [x—1=0]]

cad cell, cad cell, cad cell]

y=0 y=-Jx y=x
x=0 "lo<xAx<1 "lo<xAx<1
y=-1 -l<yny<l1i y=1
x=1 ' x=1 I x=1
y=-Vx y=yx
1 <x ' 1 <x

7’

y< -1

x=1

1<y

x=1

(8.2.9)

Note that only cells making the input formula satisfied are showns. To see all the

c

ells, one

can use the default option'output'="cad' or the option 'output'="allcell".

_>R:

cad = [cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell,
cad cell, cad cell, cad cell, cad cell, cad cell, cad cell, cad cell,

F .

Pol ynom al Ring([y, X]);
= [[y*2-x=0], [x-1=0]];
cad := Cylindrical Al gebrai cDeconpose(F, R, output=allcell);

Di splay(cad, R);

R := polynomial ring
Fi=[[y*=x=0], [x—1=0]]

cad cell, cad cell, cad cell, cad cell, cad cell]

y=y y<0 y=0
x<0 x=0 "I x=0 '
y<-Jx y=-Vx
O<xAx<l1 O<xAx<l1
y=x Ix <y
O0<xAx<l1 O0<xAx<l1
y=—1 -l1<yAy<l1
x=1 ' x=1

O<y
x=0

Ix <yAy<Jx

O<xAx<l1l

x=1

y< -1

(8.2.10)

y< -Jx y=-Jx Ix <yay<iJx
1 <x ' 1 <x ' 1 <x '
y=x Jx <y

i 1 <x 1 <x

Several other output formats are supported, including ‘'output'="tree’,
‘output'="list".

[> R := Pol ynomi al Ring([y, x]):
F:=[y"2-Xx];
cad := Cylindrical Al gebrai cDeconpose(F, R, output=list);

R = polynomzal ring

V" —x]
cad :z[[1, 1], |regular chain, —%,—%} [2,1], (8.2.11)
regular chain, | [0, 0], ——, —%HH [[2, 2], [regular chain, [[O0, 0],
[0, 01111, | 12, 31, | regutar chain, |10, 01, [% % 13,11,
1 1 . 1
regular chain, 2D , 2 H [[3, 2], |regular chain, X
17 1482911 741455 H[3], [regular chain, 1 l}
2 'l 2097152 1048576 ' g 2" 2|
. 1 1 741455 46341
[0,0]m, [3, 4], |regular chain, X 2}, 1048576 65536””
. 1 1 3 3
i [[3, 5], |regular chain, X } [X Hm
[> R := Pol ynom al Ring([y, Xx]);
F:= [N2-X];
cad := Cylindrical Al gebrai cDeconpose(F, R, output=tree);
R := polynomial ring
Fi=[y* —x] _
cad := [1, [[—1, x, 1], |regular chain, ||-—=, —%m , [[1], (8.2.12)
regular chain, —%, —% , 10, O]m” [[x, 1], [regular chain, [[O,
0]]]],“[—1,3;,1], regular chain, |[0, 0], % % H,[[[y,l],

[regular chain, [[0, 0], [0, 0]11]], H[l,y,l], [regular_chain, 0, 0],

[% = ” , |11, x, 1], |regular chain, ; é H (-1, -y +x
1 11[3 3

1 lar_ch 55y - :

], [regu ar_chain, || >, - }[T m” H[V+x 1],

—regular chain, ||+, L] [- 1482911 ' 741455 } } [[_y2+x 1

_ a5 o b 1T 20971527 1048576 ||| »

—y2 +x, 2], [regular_chain

Iz oo |15 +x2

[1 1] [741455 46341 }”” [[1 2]
27211048576 " 65536 ’ ’ Y

I

~

regular chain,

:regular chain, [L1 -, >§, i”
i - i Ft2" 2

The default algorithm of CylindricalAlgebraicDecomposeis an incremental
algorithm (CM) based on triangular decompositions proposed by Changbo Chen
and Marc Moreno Maza on ASCM' 2012. An alternative algorithm (CMXY)
proposed by Changbo Chen, Marc Moreno Maza, Bican Xia and Lu Yang on
ISSAC' 2009, which is also the first generation of algorithm for computing CAD
based on triangular decompositions, is available by the option 'method'=
‘recursive’.

_>R:

Pol ynom al Ring([y, X]);

F.=1[y"2-x];

cad : = Cylindrical Al gebrai cDeconpose(F, R, nethod=recursive,
out put =pi ecew se) ;

R := polynomial ring

Fi= [y’ - x]

1 x<0
1 y<O0

1 y=0 x=0
1 O<y

cad =1 | 1 y<-Ix (8.2.13)

1 y=-Jx

1 -Ix <yay<idx 0<x
1 y=+Vx
1 \/7<y

The CM algorithm can take advantage of equational constraints in a single semi-
algebraic system.

That is, if the input is a list of polynomial constraints involving equations, by
default, the option

'optimization'="EC'is enabled. To disable such optimization, one sets
'‘optimization'='false".

> R := Polynomal Ring([y, X]);

F := [x*"2+y"2-1=0, y"2-x=0];
cad := Cylindrical Al gebrai cDeconpose(F, R optim zation="EC
out put=al lcell):

nops(cad);

cad2 : = Cylindrical Al gebrai cDeconpose(F, R, optim zation='fal se',
out put=allcell):
nops(cad2);
R := polynomial ring
2 2 2
F=[y+x"—1=0,y —x=0]
9
53 (8.2.14)

If input is a list of list of polynomial constraints, by default an algorithm (RC-
TTICAD) for computing truth-table invariant CAD is used to compute a smaller
CAD. One could use the option'optimization'='TTICAD' or'optimization'="EC'
to enable or disable it.

> R := Polynomal Ring([y, X]);

F [[(x-2)"2+(y-4)"2=0], [x"2+y"2-1=0, y"2-x=0]];
cad := Cylindrical Al gebrai cDeconpose(F, R optim zation="TTI CAD ,
out put=al lcell):

nops(cad);

cad2 : = Cylindrical Al gebrai cDeconpose(F, R, optim zation="EC ,
output=allcell):
nops(cad2);
R := polynomial ring
Fi=[[(x=2%+ (y-4)°=0], [y’ +x*-1=0,y —x=0]]
33
65 (8.2.15)

To get a sample point of a CAD cell, the function SamplePoints can be called.
Here no cost occurs since sample points are computed along the computation of
the CAD and are stored in the type cad cell. A sample point is encoded by the type
box, which is represented by a regular chain and an isolation cube. Such a
representation allows one to easily test if the sign of a polynomial at the sample

point by calling the function SignAtBox.

> R := Polynom al Ring([y, Xx]):

cad := Cylindrical Al gebrai cDeconpose([x"2+y”2-1=0, x*y-1/2=0], R,
out put =cadcel |);

D splay(cad, R);

sp : = map(Sanpl ePoints, cad, R);

D splay(sp, R;

S : = SignAt Box(x"2+y"2-2, sp[l], R);

cad = [cad cell, cad cell]
-1 =1
Y X Y 2x

sp = [box, box]

46341 1482907 _ [185363 741457
[' 65536 ° 2097152] B [262144 ° 1048576 }
46341 741455] ’ x=[741455 46341]

65536 ° 1048576 1048576 ° 65536

s=—1 ~ (8.2.16)

X =

8.3 Quantifier elimination

As one of the main applications of cylindrical algebraic decomposition, quantifier
elimination is fully supported in the library. The function for doing quantifier
elimination is QuantifierElimination.

The user interface of Quantifier Elimination replies one some features of the
Logic library of Maple.

We introduce in addition the existential quantifier "&E" and the universal
guantifier "&A".

Suppose we'd like to solve the following QE problem (due to Davenport and
Heintz):

(Ac) (Vb,a) (@a=dAb=c)v(a=cAb=1))=a"2 =b>h.

|_>f = &E([c]), &A([b, a]), ((a=d) &and (b=c)) &or ((a=c) &and (b=

1)) & nplies (a"2=b);

f=&E([c]), &A([b, a]), (((a=d) &and (b=c)) &or ((a =c) &and (b (8.3.1)
=1))) &implies (a2 = b)

[> out := QuantifierElimnation(f);
out:=(d—1=0) &or(d+1=0) (8.3.2)

Note that in the previous example, no variable order is specified.
In such case, the function will try to find the best elimination order according to
some heuristic strategy.

> R := Polynomal Rhng([x, a, b, c]);

f &E([x]), a*x"2+b*x+c=0;

out := QuantifierElimnation(f, R);

R := polynomial ring
fi=&E([x]),axX* +bx+c=0

out := &or(c=0, &and(c < 0,b < 0,a=0), &and(c < 0,b < 0,0 < a), (8.3.3)
&and(c<O,b<O,4ac—b2=0),&and(c<O,b<0,a<O,4ac—b2
<O),&and(c<O,b=0,0<a),&and(c<0,0<b,a=0),&and(c
<0,0<b,0<a), &and(c<0,0<b,dac—b>=0),&and(c< 0,0
<b,a<O,4ac—b2<0),&and(0<c,b<O,a<0),&and(0<c,b
<0,a=0),&and(0<c,b<O,4ac—b2=0),&and(0<c,b<O,O
<adac—b*<0),&and(0<c,b=0,a<0),&and(0<c, 0<b,a
<0),&and(0<c,0<b,a=0),&and(0<c, 0<b,4ac—b*=0),
&and(0<c,0<b,0<a,4ac—b2<O))

By default, QuantifierElimination returns the standard quantifier free formula,
namely Tarski formula.
Extended Tarski formula is supported by the option 'output'="rootof".

>f = &E([x]), a*x"2+b*x+c=0;
out := QuantifierElimnation(f, output'="rootof"');

fi= &E([x]),xza—i-xb—i-c:O

out := &or[(a < 0) &and (éll)_a < c), (a=0) &and (b # 0), &and(a=0,b (8.3.4)

2

=0,c=0), (0 < a) &and [cs b—))
4 a

More examples on generating extended Tarski Formula.

>f = &E([y]), y"r2+x"2=2;
out := QuantifierElimnation(f, output=rootof);
2 .2
f=&E([y]),x +y =2

B out:=(—\/7£x) &and(xé\/?) (8.3.5)

(> f iz &E([y]), yr4+xh4=2;
out := QuantifierElimnation(f, output=rootof);
fi=&E([y]), X' +y' =2
out = (RootOf(_Z4 — 2, index = real;) < x) &and (x < RootOf(_Z4 -2, (8.3.6)

index = realz))

[> eval f (op(1, out)); evalf(op(2, out));
—1.189207115 < x
x < 1.189207115 (8.3.7)

An application for computing control Lyapunov function.

(> f1 := -x_1+u: f2 := -x_1-x_2"3:
V .= a 1*x_172+a_2*x_2"2;
Vt c=diff(V, x_ D)*f1 + diff(V, x_2)*f2;
Vi=al x_12 +a 2 x_22
i Vi=2a 1x1(-x1+u)+2a2x2(-x2°-x1) (8.3.8)
B QuantifierElimnation(&A([x_1,x _2]), &E([u]), (x_1<>0) &or
(x_2<>0) & nplies ((V>0) &and (Vt<0)));
| (0<a?2)&and (0<a 1) (8.3.9)
[> QuantifierElimnation(&A([x_1, x_2]), &E([u]), (u=b_1*x_1+b_2*
X_2) &and (a_1>0) &and (a_2>0) &and ((x_1<>0) &or (x_2<>0)
& mplies ((Vt<0))));
&and(0<a 2,0<a 1l,b2al—-a2=0,b1<1) (8.3.10)

Simplification of the output.

Without simplification:

> ff = &E([1,j]), (0 <=1i) &nd (i <= n) &nd (0 <= j) &and (] <=
n &nd (t =n - j) &nd (p =i +j);

R := Polynom al R ng([i,],p,t,n]);

sols := QuantifierElimnation(ff, R, output=rootof,

sinplification=fal se);
ff=&E([ij]), (((((0<i)&and (i< n)) &and (0 <j)) &and (j < n))

&and (t=n—j)) &and (p=1i+))

R := polynomial ring

sols = &or(&and(n=0,t=n, p=0), &and(0 < n,t=0,p=n), &and(0 (8.3.11)
<nt=0,n<p p<2n),&and(0<n,t=0,p=2n),&and(0 < n, 0
<t t<np=-t+n),&and(0<n 0<tt<n -t+n<p p<-t
+2n),&and(0<n, 0<t, t<n p=-t+2n),&and(0<n,t=n,p
=0),&and(0<n,t=n0<p,p<n),&and(0<n,t=n,p=n))

With simplification:

simplification=L4);

|:> sols := QuantifierElimnation(ff, R, output=rootof,
sols : =&and(0<n, 0<t,t<nn—-t<p p<-t+2n) (8.3.12)

9. Computing Limits: from rational functions to
topological closures

The AlgebraicGeometryTools provides facilities for studying
algebraic curves, surfaces and algebraic sets

of higher dimension. The commands currently available
mainly focus on computing limits of "family of objects”

like limits of family of secants in the case of tangent cone
computation.

Different flavors of limit points

The command LimitPoints is part of AlgebraicGeometryTools package. The
purpose of this command is to compute the limit points of a constructible setrc of
dimension one. These limit points are corresponding to the values of the free
variable of regular chain rc vanishing the product of the initials of the polynomials
of rc.The command LimitPoints comes in two different types: 1) limit points w.r.t
Zariski topology, 2) limit points w.r.t Euclidean topology. If one wants to compute
the limit points of a constructible set with respect to Zariski topology, then one
needs to use LimitPoints as following:

> restart:w th(Regul ar Chai ns): w th(Chai nTool s):
wi t h(Al gebrai cGeonetryTool s):

R := Polynomal R ng([x, Yy, z]):

rc := Chain([y"5-z"4, x*z-y"2], Enpty(R), R):
Im:= LimtPoints(rc, R):

Display(lm R);

(9.1.1)

N < X
Il
o o ©

Furthermore, LimitPoints command uses a variable called coefficientin order to
indicate what the coefficient ring for the computations is. For the current
implementation coefficient can accept only complex and real corresponding to the
limit points w.r.t Zariski and Euclidean topology, respectively. The variable
coefficient is set to complex by default. Therfore the following is equvalent to the
computations above for Im.

>rc := Chain([y"5-z"4, x*z-y"2], Empty(R), R):
Im:= LimtPoints(rc, R coefficient = conplex):
Display(lm R);

(9.1.2)

N < X
Il
o o ©

When the coefficient is set as complex, then the output of LimitPoints is called the
complex limit points or for short only limit points of the regular chainrc. When the
coefficient is set as real then this output is called the real limit points of the
regular chainrc. The following shows how to compute the real limit points of the
regular chainrec.

>rc := Chain([y"5-z"4, x*z-y"2], Empty(R), R):
Im:= LimtPoints(rc, R coefficient = real):
Display(lm R);

N < X
Il
o o ©

(9.1.3)

The command LimitPoints also have another option in order to indicate for which
value of the free variable of regular chain rc, one want to compute the limit
points of rc. In order to indicate this option, one new argument should be passed
to LimitPoints which is a list of a single univariate polynomial in free variable of rc
whose zeros are the corresponding values one want to compute the limit points of

rc at.

The following line shows how LimitPoints returns all the non-trivial limit points of
rc.
[> rc: = Chai n([y"5-z"4*(z+1) "5, x*z*(z+1)"2-y"2],Empty(R), R):
Im:= LimtPoints(rc, R); Dsplay(lm R);
Im = [regular chain, regular chain, regular chain]

x=0 x+1=0 x4—x3+x2—x+1=0
y=0 , y=0 , y=0 (9.1.4)
z=0 z+1=0 z+1=0

While the following computes the limit points only relatd to some values of the
free variable of the regular chain rc.

> |Im:=LimtPoints(rc, R [z]):Dsplay(lm R);

x=0
y=0 (9.1.5)
z=0

Real limits vs complex limits

While for some cases real limit points might be equal to the complex limit points,
this is not the case all the time.

The following example shows an example for which the real limit points are
different from the complex ones, even if the complx limit points all have rational
coefficients.

> R := Polynom al Ring([y, X, z]):
rc .= Chain([z"5+x"4-2*x"3+x"2, y*z"4+x"3-x"2], Empty(R), R):
Im:= LimtPoints(rc, R coefficient = conplex):
Display(lm R);

y=20
x=0 (9.2.1)
z=0

=> m:= LimtPoints(rc, R coefficient = real):

Display(lm R);

(9.2.2)

Nox <
Il
© o o

For the following example the real limit points and complex ones are all equal.

> R := Polynomal Rng([x, vy, z]):
rc: =Chain([y~(3)-2* y*(3)+y"(2)+z"(5), z"(4)* x+y"(3)-y*(2)],
Empty(R), R):
Im:= LimtPoints(rc, R coefficient = conplex):
Dsplay(lm R);

x=0 x=0

y=0 ,1y—1=0 (9.2.3)

z=0 z=0

=> Im:= LimtPoints(rc, R coefficient = real):
Display(lm R);

x=0
y—1=0 (9.2.4)
z=0

Different output formats of LimitPoints

The command LimitPoints have two different output formats in which the variable
ouput is responsible to control this option. A user can indicate output variable to
be set as chain, which is the default of LimitPoints command, or rootof, each of
which gives a different representation of the limit points of rc.

(> R := Pol ynom al Ring([x, vy, z]):

rc := Chain([y*4-(z"2-2)"4, (z"2-2)*x-y"2], Empty(R), R):
Im:= LimtPoints(rc, R [z"2-2], output = rootof, coefficient =
real):
Dsplay(lm R);
i [[2 = RootOf(Z*—2),y=0,x=0]] (9.3.1)
>|Im:= LimtPoints(rc, R [z"2-2], output = chain, coefficient =
real):

Display(lm R);

(9.3.2)

y=0 (9.3.2)

Computing the branches of the one-dimensional
constructible sets

The command RegularChainBranches is part of AlgebraicGeometryTools
package. The goal of this command is to compute a parametrization of the
branches of a constructible set of dimension one represented by a regular chain.
These parametrizations are actually the Puiseux parametrization of a
constructible set when the free variable approaches zero. The following example
show how to use this command without any extra option:

> wi t h(Al gebrai cGeonetryTool s):

R := Polynomal R ng([x, vy, z]):

Chai n([-z"2+y, x*z-y"2], Empty(R), R):

Regul ar Chai nBranches(rc, R [z]);
br=[lz=T,y=T" x=T"]] (9.4.1)

>rc .= Chain([y*"2*z+y+1, (z+2)*z*x"2+(y+1)*(x+1)], Empty(R), R):
Regul ar Chai nBranches(rc, R [z]);
Regul ar Chai nBranches(rc, R [z+2]);

[z T y=-T—1, x——@fﬁ 432 T4+ET3—%T +1—12T
2
_%] P T y= T—1x= (Tz—i-i)?)gT—9T—54) H
H2=T—2,y— 21674+ 21673 21672— 112 T— ; =%T3+2T2 (9.4.2)
+4T—1} [z T 2y—-2L16T4—mT3+2i‘772+%T+1,x

=%T3+%T2+T—1H

Like the LimitPoints command, RegularChainBranches also works in two different
modes: 1) complex, and 2) real. To switch between two different modes, user can
use coefficient variable which by default is set to be complex. The variable
coefficient indicates in which coefficient ring, the coresponding parametrization
of the branches will be computed. If it is set as real then it means that all the
coefficients of the parametrizations are real numbers, complex, otherwise.

> rc:=Chai n([y"(3)-2* y"(3)+y"(2)+z"(5), z"(4)* x+y"(3)-y"(2)],
Empty(R), R):

br : = Regul ar Chai nBranches(rc, R, [z], coefficient = conplex);
2
brie||z=12 y= - T5(T5—2R0(;t0f(z°+1)) (9.4.3)
0 15 2 10
_ T (16T RootOfE(;Z +1)—10T"-8) | [,_ 12 _
T (T°+ 2 RootOf(Z*+ 1))
2 7’
0 15 2 10
_ T (T°+6T RootOfE(;Z +1)=10T7=8) | [, o1 75,1 4
=-T"—27°—T]
=> br := Regul ar Chai nBranches(rc, R, [z], coefficient = real);
| bri=[lz=T,y=T"+1,x=-T"'—27°—-T]] (9.4.4)

In the parametrization of the branches of the constructible set represented as a
regular chain, a new (parametric) variable is introduced. This variable by default
is chosen to be T, but also can be cottroled by user. The following examples shows
how this can be done:

>rcC
br

Chain([-z"2+y, x*z-y"2], Empty(R), R):
Regul ar Chai nBranches(rc, R, [z"2+1], coefficient = conpl ex)

br [[z=T+ RootOf(Z*+ 1), y=2TRootOf(Z*+ 1) + T — 1, x= (-T° (9.4.5)
+3T°+3T*—1)RootOf(Z*+1)+3T - T°+T° - 3T]]

>rc = Chain([-z"2+y, x*z-y"2], Enmpty(R), R):
br : = Regul ar Chai nBranches(rc, R, [z"2+1], coefficient = conplex,
W

bri=[[z=W+ RootOf(Z*+ 1), y=2WRootOf(Z*+1) + W*—1,x=((9.4.6)
W+ 3WP+3W?—1) RootOf(Z*+ 1) +3W — W+ W° — 3W]]

Also it is possible to determine how many terms can be computed in the
parametrization of the branches of the regular chain rc. This feature can be used
as follow:
First create a list of accuracies whose elements is equal to the number of
polynomials in rc.
> L:=11,8];
| L:=11, 8] (9.4.7)
Then, we have:
> R := Polynomal Ring([x, vy, z]):
rc := Chain([y"2*z+y+1, (z+2)*z*x"2+(y+1)*(x+1)], Enpty(R), R):
Regul ar Chai nBranches(rc, R, [z],L);

a A2 o\

_ _ _ 1 _ _
[z—T,y— T—1,x= - yogooeoe (1Y = 2T +4T° 8T (9.4.8)

+16) (1437° =396 T + 1134 T° — 3402 T° + 10935 T* — 39366 T°

+ 177147 T* — 1594323 T — 4782969) (T* + 2 T° +4T> + 8T+ 16) (T

1
4897760256
+1134T° — 3402 T° + 10935 T* — 39366 T° + 177147 T> — 1594323 T
~9565938) (T*—2T° +4T*—8T+16) (T*+2T° +4T*+ 8T

| +16) (T—2))]]
If now, we change the accrucaies, we have the following:

)], [z=T,y=—T—1,x= ((143T% - 396 T’

(> L= [1,4]:
Regul ar Chai nBranches(rc, R [z],L);

[z=T,y=—T—1,x=W5968T9— 34392 T’%—%ﬁ (9.4.9)
—%Tﬁ—%ﬁJF%TA—%TSJF%TZ—%TJA},[z
=T'y=_T_1'X='W5968T9+ 34;92 ﬁ_ﬁﬂ
+%Tﬁ+%ﬁ_ 651);3;4 TAJF%Ts_%ﬁTZJF%T

_1
Bl
It is worth mentioning that when the list L is not presented, it means a default
value is computed for the list L. This value is called list of accrucaies and it meets
some requirements. These requirements can be found at Computing the Limit

Points of the Quasi-component of a Reqular Chain in Dimension One.

Computing limits of fractional multivariate polynomials
(when origin isthe singular point of denominator)

RationalFunctionLimitis a command of AlgebraicGeometryTools in order to
compute the limit of the fraction of multivariate polynomials at a point where this
point is an isolated zero of the denominator. RationalFunctionLimit accepts two
arguments: 1) the fraction of multivariate polynomials g, 2) a list of all the
variables equal to some values, indicating the point we aim at computing the limit
of g at. The following examples demonstrate how this command works:

> restart: w th(Al gebrai cGeonetryTool s):
Rat i onal Functi onLi m t (x"2*y*z"2/ (x 4+y"4+z"4), [x =0, vy =0, z =
0]);
0 (9.5.1)

> Rational FunctionLi mt ((wWz+x"2+y"2)/ (Wr2+x"2+y"2+z72), [x = 0, vy
=0, z=0, w=20]);
_ "no_finite_limit" (9.5.2)
> Rational FunctionLi m t (x"6/ (W\6+l "2+t "2+x"2+y"2+z"2), [x = 0, y =
0, z=0, w=0,t =0, | =20]);
0

L (9.5.3)
> Rational FunctionLi mt(x*y*z*w (W\4+x"4+y"4+z"4), [x =0, y =0, z
=0, w=20]);
"no_finite_limit" (9.5.4)

> Rati onal Functi onLi mt((x*y+x*z-y*z)/ (x"2+y"2+z"2), [x =0, y =0,
z = 0]);

"no_finite_limit" (9.5.5)

Computing tangent cone of algebraic curves

The command TangentCone is integrated into AlgebraicGeometryTools package.
The goal of this command is to compute the tangent cone of a polynomial system
of dimension one at some points on the curve. These points can do not necessarily
have rational coefficients. The following shows how to use this command.

First introduce the polynomial ring:

> R := Polynom al Rng([x, vy, z]):

Second, introduce the points using a zero-dimensional regular chain:
|:> rc := Chain([z-1, vy, x], Empty(R), R:

Then, introduce the polynomial system of dimension one, compute the tangent
cone of this system at the point represented by rc:

> Gs
tc :

[xN2+y"N2+2z72-1, x"2-yN2-z*(z-1)]:
Tangent Cone(rc, Gs, R);
tc = {[[_z— 1, 3_><2 — _yz], regular_chain]} (9.6.1)

There are two different representations for the output of TangentCone; Since the
tangent cone of the polynomial systems of dimension one are lines, therefore,
those lines can be represented both with their eugations or slopes. The default is
set as equations. Each format of the output can be used as follows:

ERTRE Tangent Cone(rc, Gs, R, equations);

i tc={[[z—1,3 x*— V], regular chain]} (9.6.2)

> tc .= Tangent Cone(rc, Gs, R, slopes);

tc = {[[z v—1, 3% — 1], regular_chain], [[z y2 -3, x— 1], (9.6.3)
regular chain]}

In order to indicate the equations or the slopes of the tangent cone some new
variables are used in order to distinguish the coordinate system of the equations
and slopes from the original coordinate system. The default variables used for
equation mode are the original names of variables where underscore is added as
prefix to the variables. For slopes precentage added as prefix to original variables
is used as default variables. However, the default for these variables can be
controled by user as follows:

> tc .= Tangent Cone(rc, Gs, R slopes, [t, s, W);
tc:={[[w,s—1, 3¢ — 1], regular chain], [[w, s> 3, t— 1], (9.6.4)
regular chain]}

Computing the tangent plane of the multivariate
polynomials

TangentPlane is another command of AlgebraicGeometryTools package of Maple
Its goal is to compute the tangent plane of a algebraic surface represented by a
polynomial at some point on the surface.

>rc Chain([z, y-1, x], Empty(R), R):
tp := Tangent Pl ane(rc, x*y, R);
tp == [[_x rcl]

(9.7.1)

Computing the intersection multiplicity of a polynomial
system of dimension zero

The command TriangularizeWithMultiplicity is part of AlgebraicGeometryTools
package. This command targets the intersection multiplicity computations of a
polynomial system of dimension zero.

This command first attempts to solve this system using Triangularize command of
RegularChains Library without taking multiplicity into considerations. Then for
each point represented by the zero-dimansional regular chains in the triangular
decomposition of the input system, it computes the intersection multiplicity of the
original system at this related point.

>R := Polynom al Ring([z, vy, X]):

F .= [x"2+y+z-1, y"2+x+z-1, z"2+x+y-1]:

dec := TriangularizeWthMiltiplicity(F, R):
Di spl ay(dec, R);

z—x=0 z=0 z=0
1, y—x=0 12,1 y=o0 2, 1y—1=0 12, (9.8.1)
X 4+2x—1=0 x—1=0 x=0

Return to Index for Example Worksheets

